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Decision trees and regression trees are well-studied and widely used in practice (Breiman et al., 1984;
Quinlan, 1986). The learning process of decision trees typically consists of two parts: a growing phase in
which nodes are added to the tree based on a prediction gain, and a pruning phase in which the tree size is
reduced in order to guard from over-fitting and provide good generalization. A variety of pruning methods
have been proposed and analyzed (see for instance (Kearns and Mansour, 1996; Mansour, 1997)). Most
pruning methods however are not directly related to the growing phases.

In this paper we define a generalization of a decision tree that we call a Self-pruning Prediction Tree
(SPT). Each node of a SPT is associated with a real valued prediction. Given an input instance, the
prediction of a SPT is formed by summing the individual prediction at the nodes traversed from the root
node to a leaf by applying a sequence of branching predicates. The probability associated with a target is
obtained by applying an exponential model over the aforementioned sum. (See below for a formal definition.)
Alternatively, a SPT can be viewed as a piece-wise constant function from the input space into the reals.
We associate with each SPT a notion of complexity that amounts to the total function variation using the
latter view. The hierarchical structure of a SPT enables efficient computation of its variation value which
facilitates an efficient pruning procedure that is tightly coupled with the growing phase. Our construction is
novel and the resulting self-pruning algorithm has not been proposed before. Nonetheless, this work builds
upon and distills ideas from statistics (Breiman et al., 1984), information theory (Willems et al., 1995), and
learning theory (Helmbold and Schapire, 1997).

A prediction tree (PT) is a generalization decision tree in which each node x has associated with it both
a variable vx used for branching as in a standard decision tree, and a real value αx. Here we focus on binary
predictions, however our definition can be easily extended for regression problems. For any node x in the
prediction tree, let Px be the nodes along the path from the root to x, and let b(x) =

∑
i∈Px

αi. For any
node, the prediction tree defines a probablity that an example reaching this node is positive. Specifically,
for y the label of an example, and x an arbitrary node in the prediction tree, Pr(y = +1|x) = 1/(1 + e−b(x))
and Pr(y = −1|x) = 1/(1 + eb(x)).

For a prediction tree T we define the variation complexity V (T ) as
∑
x∈T

∥∥αC(x)

∥∥
p

where C(x) is the set

of children of x, and by convention α = 0 for a null child. So for p = 1, V (T ) =
∑
x∈T

∑
x′∈C(x)

αx′ =
∑
x∈T

αx,

and for p = ∞, V (T ) =
∑
x∈T (maxx′∈C(x) αx′). Let fT be the function represented by prediction tree T .

Our goal is to construct a tree that minimizes the logistic loss L with a `p regularization applied to the

complexity of T . That is, we aim to minimize L =
m∑
i=1

[
wi log

(
1 + e−yi·fT (x)

)]
+ λ ‖V (T )‖p where m is the

size of the training set, yi ∈ {−1,+1} is the label for example i, and wi is the weight associated with example
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i where we assume that
∑m
i=1 wi = 1.

As in the standard greedy tree building algorithm, we select the variable to place in the root, and then
recursively apply the same procedure to all newly added nodes. However, the optimization used to select
the variable to place in the root simultaneously determines the value αj for each the branches defined by the
selected variable. For each branch for which αj 6= 0, this process is recursively applied. A key contribution
of our algorithm is that the regularizer used in our obective function determines when to stop growing the
tree. Furthermore, the regularization constant λ can be viewed as a control for the degree of “sparsity” for
the prediction tree.

Consider a leaf node x that we are considering expanding. We select the variable v to replace leaf x by
selecting the one which minimizes the loss. We now derive the loss obtained when x is replaced by the k-ary
variable v, which in turn will create children with real-values α1, . . . , αk. Let wi,j = wi when example i goes
to branch j (which has associated value αj), and wi,j = 0 otherwise. We compute the values of the α by

minimizing the logistic loss L with a `p regularizer: L =
k∑
j=1

m∑
i=1

wi,j log(1 + e−yi(αj+b(x))) + λ ‖α‖p.

Since we are focusing on the task of replacing node x, we let b = b(x), and let µ+
j =

∑
yi≥0 wi,j and let

µ−j =
∑
yi<0 wi,j . Thus L =

k∑
j=1

[µ+
j log(1 + e−(αj+b)) + µ−j log(1 + e(αj+b))] + λ ‖α‖p.

It can be shown that for dual Q where γj is the dual variable associated with αj ,

−Q =
∑
j

µjH2

(
µ+
j − γj
µj

)
+ b

∑
j

γj

with the constraint that ‖γ‖q ≤ λ where q is the dual norm of p. Observe that when γj = 0, our optimization
criteria becomes the standard weighted entropy-based information gain.

The key contribution of our work, in addition to the introduction of the the self-pruning prediction tree,
is our nearly-linear time algorithm to efficiently compute the optimal αs for each node in the prediction tree
using either the `1 regularizer (p = 1) or an `∞ regularizer (p = ∞) in defining the tree complexity. At a
high-level, our algorithm works by computing the optimal solution γ∗1 , . . . , γ

∗
k for the dual, and then maps

back to the primal solution using αj = log

(
µ+
j − γj
µ−j + γj

)
− b. Furthermore, we believe that our techniques is

quite general, and can be extended for regression problems.
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