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Recently a new learning paradigm, called Learning Using Privileged Information (LUPI),
was introduced by Vapnik et al. [5–7]. In this paradigm, in addition to the standard training
data, (x, y) ∈ X ×{±1}, a teacher supplies a student with the privileged information x∗ ∈ X∗.
The privileged information is only available for the training examples and is never available for
the test examples. The LUPI paradigm requires, given a training set {(xi,x

∗
i , yi)}n

i=1, to find a
function f : X → {−1, 1} with the small generalization error for the unknown test data x ∈ X.

LUPI paradigm can be implemented based on SVM algorithm [2]. The decision function of
SVM is f(z) = w · z + b, where z is a feature map of x, and w and b are the solution of (1).

min
w,b,ξ1,...,ξn

1

2
‖w‖2

2 + C

n∑
i=1

ξi (1)

s.t. ∀ 1 ≤ i ≤ n, yi (w · zi + b) ≥ 1− ξi,

∀ 1 ≤ i ≤ n, ξi ≥ 0.

Let f ∗ = (w∗, b∗) be the decision function found by
SVM when n = ∞. Suppose that for each training
example xi an oracle gives us the value of the slack
ξ∗i = 1−yi(w

∗ ·xi + b∗). We substitute these slacks
into (1), fix them and optimize (1) only over w and
b. We denote such variant of SVM as OracleSVM.
The generalization error of the decision function found by OracleSVM converges [6] to the one
of f ∗ with the rate of 1/n. This rate is much faster than the convergence rate 1/

√
n of SVM.

In the absence of the optimal values of slacks we use the privileged information {x∗i }n
i=1 to es-

timate them. Let z∗i be a feature map of x∗i . We seek a correcting function φ(x∗i ) = w∗·z∗i +d that

min
w,b,w∗,d
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γ

2
‖w∗‖2

2 + C

n∑
i=1

(w∗ · z∗i + d) (2)

s.t. ∀ 1 ≤ i ≤ n, yi (w · zi + b) ≥ 1− (w∗ · z∗i + d),

∀ 1 ≤ i ≤ n, w∗ · z∗i + d ≥ 0.

approximates ξ∗i . We substitute ξi =
φ(x∗i ) into (1) and obtain the modifi-
cation (2) of SVM, called SVM+ [5].
The objective function of SVM+
contains two hyperparameters, C >
0 and γ > 0. The term γ‖w∗‖/2 in
(2) is intended to restrict the capacity (or VC-dimension) of the function space containing φ.

A common approach to solve (1) is to consider its dual problem. We also use this approach
to solve (2). The dual optimization problems of SVM and SVM+ are (3) and (5) respectfully,

max
α

n∑
i=1

αi − 1

2

n∑
i,j=1

αiαjyiyjKij (3)

s.t.
n∑

i=1

yiαi = 0, (4)

∀ 1 ≤ i ≤ n, 0 ≤ αi ≤ C.

max
α,β

n∑
i=1

αi − 1
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n∑
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αiαjyiyjKij − 1

2γ

n∑
i,j=1

τiτjK
∗
ij (5)

s.t.
n∑

i=1

τi = 0,
n∑

i=1

yiαi = 0,

∀ 1 ≤ i ≤ n, τi = αi + βi − C, αi ≥ 0, βi ≥ 0.

where Kij = K(xi,xj) and K∗
ij = K∗(x∗i ,x

∗
j) are kernels in the decision and the correcting

space respectfully. The decision and the correcting functions, expressed in the terms of the dual



variables, are f(x) =
∑n

j=1 αjyjK(xj,x)+b and φ(x∗i ) = 1
γ

∑n
j=1(αj+βj−C)K∗

ij+d respectfully.
SVM and SVM+ have syntactically the same decision function. However semantically they are
different, since the values of α’s found by SVM and SVM+ can differ significantly.

One of the widely used algorithms for solving (3) is SMO [4]. At each iteration SMO opti-
mizes the working set of two variables, αs and αt, while keeping all other variables fixed. We
cannot optimize the proper subset of such working set, say αs: due to (4), if we fix n−1 variables
then the last variable is also fixed. Hence the working sets selected by SMO are irreducible.

Following [1], we present SMO as an instantiation of the framework of sparse line search algo-
rithms to the optimization problem of SVM. At each iteration the algorithms in this framework
perform line search in some chosen sparse direction which is close to the gradient direction. We
instantiate the above framework to SVM+ optimization problem and obtain alternating SMO
(aSMO) algorithm. aSMO works with irreducible working sets of two or three variables.

Sparse line search algorithms in turn belong to the family of approximate gradient descent
algorithms. The latter algorithms optimize by going roughly in the direction of gradient. Unfor-
tunately gradient descent algorithms can convergence very slowly. One of the possible remedies
is to use conjugate direction optimization, where each new search direction is conjugate to all
previous ones. When applied to SVM-like problems, the conjugate direction optimization is
very expensive, since it requires to store in memory the entire kernel matrix.

We combine the ideas of sparse line search and conjugate direction and present a framework
of optimization algorithms, that at each iteration perform line search in a chosen sparse direction
which is close to the gradient direction and is conjugate to k previously chosen ones. We
instantiate this framework to SVM and SVM+ problems and obtain Conjugate SMO (cSMO)
and Conjugate Alternating SMO (caSMO) algorithms. cSMO and caSMO work with irreducible
working sets of size up to k +2 and k +3 respectfully. We show empirically that for large values
of hyperparameter C, cSMO is significantly faster than SMO. Also our experiments indicate an
order-of-magnitude running time improvement of caSMO over cSMO.

Vapnik et al. [6, 7] showed that LUPI paradigm emerges in several domains, for example, time
series prediction and protein classification. To motivate further the usage of LUPI paradigm and
SVM+, we show how it can be used to learn from the data generated by human computation
games. Our experiments indicate that the tags generated by the players in ESP [8] and Tag a

Tune [3] games result in accuracy improvement in image and music classification.
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