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Introduction

In order to achieve higher levels of autonomy, robots needatility to interact naturally with humans in
unstructured environments. One of the most intuitive andile interaction modalities is to allow a human
teammate to instruct a robot with natural language commadndsder to follow natural language directions,
a robot needs to convert symbolic natural language instmgto low level actions and observations. We
would like a system that can take a command from a teammate as¢Follow me to the kitchen” and
generate a sequence of actions that corresponds to thediesition through the environment.

Our approach to solving this problem is inspired by invensineal control or inverse reinforcement learning
[8]. Inverse RL uses a corpus of execution traces for a speaifion generated by an external signal to
learn a model that can be used for decision making in the dutdor example, watching the execution
traces of a human teammate can be used to recover the tedmreatard function [7]. However, unlike
inverse reinforcement learning, we would like to learn a eidlat is conditioned on the semantic content of
the human instructions so that for example, the planneriigus reward function that is dependent on the
instruction “Follow me to the kitchen”.

From Commandsto Behavior

If C is a cost functiong; are actionss; are states of the world, is the natural language command, dnds
the parameters of the model, then following instructiorthésoptimum of a cost function,

argmin C(ay ...ar|L; D) 1)
where  C(ay ...ar|L; D) £ log(p(sy ... sr|L; D)) 2

We assume that actions of the robot following instructioresdeterministic, allowing us to map the action
sequence, . .. ar t0 a trajectory or state sequeneg. . . s7.

The first challenge is that conditioning dnintroduces a problem of data sparsity; natural language in-
structions can have almost arbitrary structure and alnmbérary vocabulary. Using inverse reinforcement
learning to learn a likelihood model of arbitrary languagh require an intractable amount of training data.
To overcome this difficulty, we have shown previously [3]tth&e can use a shallow semantic structure
called thespatial description clause (SDC) [2, 4, 5] to parse the instructiordsto a grammar composed of

clauses consisting of a veth, e.g. “go”, “meet”, “follow”, coupled with a spatial relatn sr, e.g. “past”,

“through”, “towards” and a landmark;,, e.g., “kitchen”, “office”, “street corner”. The verb degms the
intended action, and the spatial relation and the landmascribe where the action should take place. If
L ={sdg,...,sdc }, then we can write

K
p(si-..sr|L; D) = T[ D p(sdalss, ,..; D)p(dr)p(s1 ... 575 D), €)

k=1 &
where each sddis given as
p(SdQC‘SQﬁk‘l:n ) D) = p(srlw lk|s¢k,1:n; D) 'p(vkv lk|s¢k,1:n ) D)v (4)

ande¢y 1., assigns a subset of states frons,.1 to sdg.. In essencesy, ... sp describes a trajectory of the
robot; p(vk, lx|s¢, ,.,.; D) describes the likelihood of a piece of the trajectory givemverb in thekth SDC,
andp(srg, lx|se, ,..; D) describes the likelihood of a piece of the trajectory odogrin a specific location of
the environment given the spatial relation and the landmiBinke priorp(sy, . . . s7; D) enforces the sequential
nature of instructions; for example, state sequences teat@ contiguous are lower probability, although



not zero probability because human directions may skigsstapmay even have a different representation of
space. By restricting the linguistic structure to SDCs, weeable to factor the original distribution and learn
models for the individual terms.

In order to learn models of verbs, e.g., “Go” for navigatitiiget” to approach another moving entity in the
environment, we collect a set of example trajectories aexfieatures of the trajectory and use standard super-
vised learning to build a generative model. Similarly, @rkemodels of spatial relations such as “towards” or
“through”, we again extract features from example trajgetoand use standard supervised learning to build
a generative model.

Each trajectory is modelled in relation to a specific landmarg., “the kitchen” or "the streetcorner”. We
assume the robot has the ability to recognize a set of predkioncepts, using a pre-trained parts-based
object recognizer [1]. However, the specific landmark usgdhe human teammate may be an unknown
synonym for a known concept, or may not even be a known conkleptever, the relation between unknown
words and known words can be learned from large databaspsadtice we use the tags of Flickr images to
learn the correlations between known and unknown concepigie tags have the property that concepts that
are correlated in images tend to be correlated in the physimdd. Therefore, given an unknown landmark
in a set of instructions (e.g., “microwave”) that corretatéghly with a known concept (e.g., “kitchen”) in
image tags, we learn to expect the new concept in the samolosave see the known concept.

A second challenge is that the cost function depends onkékhood

of each spatial description clause gdand in turn depends on an Uns——— y=y

bounded number of states, ,.,. As a result, the planning problem| .. rerson %
is not first-order Markov, and the reward function may in faetof 9 tart jE %

Stop

arbitrary order, which precludes standard planning temmes such as Q

dynamic programming. However, since the reward functidhedog- % Fﬁ

likelihood of the instructions, the planning problem is iglent to : O
inference in a loopy (possibly fully connected) undirectedph, and b AR @ nicrowave
akin to [6] we can apply standard inference techniques teesthle t?"w1 %
planning problem. i g‘_.l_
Preliminary results shown in table 1 indicate good perfarogaon Y4

some commands, such as simply following directions to raieiglﬁ . |

through an environment (90%). Bringing another person tpex s

cific location performs less well. ‘bring” involves more cpex event Fig. 1. Top scoring plan for “Meet the
structure than other verbs: the robot must first approactpéngson, person at the kitchen” The system
then take them somewhere else. This structure is difficul fimple searches over action sequences the robot
feature-based classifier to model. An example output of ése of could take, combined with possible tra-
the inference appears in Figure 1, for “Meet the person ditithlen.” jectories for the person. It outputs the
The system uses inferences over possible paths of the rabatha Most likely pair of trajectories for the
person to find the most likely path according to our model, takgs roPotand person.

the corresponding action. It does this at each timestefhesoverall

output is a trajectory for the robot through the environmeaylanning

at each step in response to the person’s actions.

Go Follow Avoid Meet Bring Overall
90% 80% 78%  70% 29% 69%

Table 1: Accuracy of our algorithm for various verbs, over a cogfut6 commands.
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