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Introduction
In order to achieve higher levels of autonomy, robots need the ability to interact naturally with humans in
unstructured environments. One of the most intuitive and flexible interaction modalities is to allow a human
teammate to instruct a robot with natural language commands. In order to follow natural language directions,
a robot needs to convert symbolic natural language instructions to low level actions and observations. We
would like a system that can take a command from a teammate such as “Follow me to the kitchen” and
generate a sequence of actions that corresponds to the desired motion through the environment.

Our approach to solving this problem is inspired by inverse optimal control or inverse reinforcement learning
[8]. Inverse RL uses a corpus of execution traces for a specific action generated by an external signal to
learn a model that can be used for decision making in the future. For example, watching the execution
traces of a human teammate can be used to recover the teammate’s reward function [7]. However, unlike
inverse reinforcement learning, we would like to learn a model that is conditioned on the semantic content of
the human instructions so that for example, the planner is using a reward function that is dependent on the
instruction “Follow me to the kitchen”.

From Commands to Behavior
If C is a cost function,ai are actions,si are states of the world,L is the natural language command, andD is
the parameters of the model, then following instructions isthe optimum of a cost function,

argmin
a1...aT

C(a1 . . . aT |L;D) (1)

where C(a1 . . . aT |L;D) , log(p(s1 . . . sT |L;D)) (2)

We assume that actions of the robot following instructions are deterministic, allowing us to map the action
sequencea1, . . . aT to a trajectory or state sequences1, . . . sT .

The first challenge is that conditioning onL introduces a problem of data sparsity; natural language in-
structions can have almost arbitrary structure and almost arbitrary vocabulary. Using inverse reinforcement
learning to learn a likelihood model of arbitrary language will require an intractable amount of training data.
To overcome this difficulty, we have shown previously [3] that we can use a shallow semantic structure
called thespatial description clause (SDC) [2, 4, 5] to parse the instructionsL to a grammar composed of
clauses consisting of a verbvk, e.g. “go”, “meet”, “follow”, coupled with a spatial relation srk, e.g. “past”,
“through”, “towards” and a landmarklk, e.g., “kitchen”, “office”, “street corner”. The verb describes the
intended action, and the spatial relation and the landmark describe where the action should take place. If
L = {sdc1, . . . , sdcK}, then we can write

p(s1 . . . sT |L;D) =

K∏

k=1

∑

Φk

p(sdck|sφk,1:n
;D)p(φk)p(s1 . . . sT ;D), (3)

where each sdck is given as

p(sdck|sφk,1:n
;D) = p(srk, lk|sφk,1:n

;D)·p(vk, lk|sφk,1:n
;D), (4)

andφk,1:n assigns a subset ofn states froms1:T to sdck. In essence,s1, . . . sT describes a trajectory of the
robot;p(vk, lk|sφk,1:n

;D) describes the likelihood of a piece of the trajectory given the verb in thekth SDC,
andp(srk, lk|sφk,1:n

;D) describes the likelihood of a piece of the trajectory occurring in a specific location of
the environment given the spatial relation and the landmark. The priorp(s1, . . . sT ;D) enforces the sequential
nature of instructions; for example, state sequences that are not contiguous are lower probability, although
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not zero probability because human directions may skip steps, or may even have a different representation of
space. By restricting the linguistic structure to SDCs, we are able to factor the original distribution and learn
models for the individual terms.

In order to learn models of verbs, e.g., “Go” for navigation,“Meet” to approach another moving entity in the
environment, we collect a set of example trajectories, extract features of the trajectory and use standard super-
vised learning to build a generative model. Similarly, to learn models of spatial relations such as “towards” or
“through”, we again extract features from example trajectories and use standard supervised learning to build
a generative model.

Each trajectory is modelled in relation to a specific landmark, e.g., “the kitchen” or ”the streetcorner”. We
assume the robot has the ability to recognize a set of predefined concepts, using a pre-trained parts-based
object recognizer [1]. However, the specific landmark used by the human teammate may be an unknown
synonym for a known concept, or may not even be a known concept. However, the relation between unknown
words and known words can be learned from large databases. Inpractice we use the tags of Flickr images to
learn the correlations between known and unknown concepts;image tags have the property that concepts that
are correlated in images tend to be correlated in the physical world. Therefore, given an unknown landmark
in a set of instructions (e.g., “microwave”) that correlates highly with a known concept (e.g., “kitchen”) in
image tags, we learn to expect the new concept in the same locations we see the known concept.

Fig. 1: Top scoring plan for “Meet the
person at the kitchen.” The system
searches over action sequences the robot
could take, combined with possible tra-
jectories for the person. It outputs the
most likely pair of trajectories for the
robot and person.

A second challenge is that the cost function depends on the likelihood
of each spatial description clause sdck, and in turn depends on an un-
bounded number of statessφk,1:n

. As a result, the planning problem
is not first-order Markov, and the reward function may in factbe of
arbitrary order, which precludes standard planning techniques such as
dynamic programming. However, since the reward function isthe log-
likelihood of the instructions, the planning problem is equivalent to
inference in a loopy (possibly fully connected) undirectedgraph, and
akin to [6] we can apply standard inference techniques to solve the
planning problem.

Preliminary results shown in table 1 indicate good performance on
some commands, such as simply following directions to navigate
through an environment (90%). Bringing another person to a spe-
cific location performs less well. ‘bring” involves more complex event
structure than other verbs: the robot must first approach theperson,
then take them somewhere else. This structure is difficult for a simple
feature-based classifier to model. An example output of one step of
the inference appears in Figure 1, for “Meet the person at thekitchen.”
The system uses inferences over possible paths of the robot and the
person to find the most likely path according to our model, andtakes
the corresponding action. It does this at each timestep, so the overall
output is a trajectory for the robot through the environment, replanning
at each step in response to the person’s actions.

Go Follow Avoid Meet Bring Overall

90% 80% 78% 70% 29% 69%

Table 1: Accuracy of our algorithm for various verbs, over a corpusof 46 commands.
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