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∗Google, USA †Université Paris 6, LIP6, France

{jweston,bengio}@google.com nicolas.usunier@lip6.fr

Web scale image annotation datasets have tens of millions of images with tens of thousands of possible
annotations. We propose a strongly performing method that scales to such datasets by simultaneously
learning to optimize precision at k of the ranked list of annotations for a given image and learning a low-
dimensional joint embedding space for both images and annotations. Our method both outperforms several
baseline methods and, in comparison to them, provides a highly scalable architecture in terms of memory
consumption and prediction time. We also demonstrate how our method learns an interpretable model,
where annotations with alternate spellings or even languages are close in the embedding space. Hence, even
when our model does not predict the exact annotation given by a human labeler, it often predicts similar
annotations, a fact that we try to quantify by measuring the so-called “sibling” precision metric, where our
method also obtains excellent results.

Joint Word-Image Model We jointly learn two mappings, one for images and one for annotations, into
the same joint feature space finally learning a ranking function of the form:

fŷ(x) = s(ΦW (ŷ),ΦI(x)) (1)

where the possible annotations ŷ are ranked according to fŷ(x), largest first, s(·, ·) is the negative Euclidean
distance, and ΦI(x) = V x and ΦW (ŷ) = Wŷ are linear maps from image x and annotation ŷ. Our goal is, for
a given image, to rank the possible annotations such that the highest ranked ones best describe the content
of the image. We learn this mapping using a ranking function that optimizes the top of the ranked list.

Weighted Approximate-Rank Pairwise (WARP) Loss A classical approach to learning to rank is
to maximize AUC by minimizing the pairwise loss

∑
x

∑
y

∑
ȳ 6=y max(0, 1 + fȳ(x) − fy(x)) where y is the

true label for x. A scalable version of this cost is based on sampling triplets (x, y, ȳ) and applying stochastic
gradient descent (SGD) on the resulting hinge loss. However this cost considers all pairwise errors similarly
while for many applications including image annotation, one is often more interested in optimizing the top
of the ranked list. A class of ranking error functions recently defined in (Usunier et al., 2009) defines the
loss:

err(f(x), y) = L(ranky(f(x))), ranky(f(x)) =
∑
ȳ 6=y

I(fȳ(x) ≥ fy(x)) (2)

where ranky(f(x)) is the rank of the true label y given by f(x) and L(·) transforms this rank into a loss:
L(k) =

∑k
j=1 αj , with α1 ≥ α2 ≥ · · · ≥ 0. This class allows one to define different choices of L(·) with

different minimizers. Results on (small) text retrieval datasets in (Usunier et al., 2009) showed that a choice
of αj = 1/j yields state-of-the-art results in terms of precision@k or mean average precision (MAP).

While it is well known how to optimize AUC online by SGD for large scale tasks, optimizing MAP or
precision@k is so far less scalable. In this work we show how to efficiently optimize (2) by SGD for arbitrary
differentiable models. The main idea is on each update, instead of measuring all ȳ 6= y in (2) which is too
expensive, we sample ȳ with replacement until fȳ(x) ≥ fy(x). We can then approximate the rank with:

ranky(f(x)) ≈
⌊
Y − 1
N

⌋
where Y is the number of labels, b.c is the floor function and N the number of trials in the sampling
step. Overall, our method which we call Wsabie (Web Scale Annotation by Image Embedding, pronounced
“wasabi”) consists of the joint word-image embedding model trained by SGD using the WARP loss.



Experiments We had access to a very large proprietary database of images taken from the web, together
with noisy annotation based on anonymized user click information. There was respectively 10M, 3M and
3M training, validation and test images, annotated with 109,444 different labels. Given the size of the label
set, many labels can be semantically close to each other. Indeed, two different labels can be synonyms,
translations or alternative spellings. Our model tries to capture this structure through the projection in the
embedding space. For each label, we had access to a set of so-called “sibling labels”, considered semantically
near the considered label, which we use for evaluation. Images were represented by a sparse vector of texture
and color features, following (Grangier & Bengio, 2008). Results are given in Table 1 compared to k-NN,
One-Vs-Rest using (Crammer et al., 2006) and Pamir (Grangier & Bengio, 2008) which optimizes AUC.
Example word embeddings learnt by Wsabie are given in Table 2 and some example image annotations are
given in Table 3. One can see that the embeddings seem to learn the semantic structure of the annotation
space (and images are also embedded in this space) and sibling annotations are close to each other. This
explains why the sibling precision of Wsabie is far superior to competing methods, which do not attempt
to learn the structure between annotations.

Table 1: Test Set Results. Precision at 1 and 10, Sibling Precision at 10, Mean Average Precision (MAP), and time
and space complexity to return the top annotation on a test image, not including feature generation. [In brackets,
concrete time/memory for a single CPU machine]. Y is the number of classes, n the number of train examples, d the
image input dimension, dø̄ the average number of non-zero values per image, and D the size of the embedding space.

Algorithm p@1 p@10 psib@10 MAP Time Space

k-NN 0.30% 0.34% 5.97% 1.52% O(n · dø̄) [113s] O(n · dø̄) [27GB]
One-vs-Rest 0.52% 0.29% 4.61% 1.45% O(Y · dø̄) [0.5s] O(Y · d) [8.2GB]
PamirIA 0.32% 0.16% 2.94% 0.83% O(Y · dø̄) [0.5s] O(Y · d) [8.2GB]

Wsabie 1.03% 0.44% 9.84% 2.27% O((Y + dø̄) ·D) [0.17s] O((Y + d) ·D) [82MB]

Table 2: Nearest annotations in the embedding space learnt by Wsabie. Translations and alterna-
tive/misspellings and synonyms have close embeddings. Other annotations are from similar visual images.

Annotation Neighboring Annotations

barack obama barak obama, obama, barack, barrack obama, bow wow, george w bush, berlusconi
david beckham beckham, david beckam, alessandro del piero, del piero, david becham, fabio cannavaro

dolphin delphin, dauphin, whale, delfin, delfini, baleine, blue whale, walvis, bottlenose dolphin, delphine
cows cattle, shire, dairy cows, kuh, horse, cow, shire horse, kone, holstein, appaloosa, caballo, vache

mount fuji mt fuji, fuji, fujisan, fujiyama, mountain, zugspitze, fuji mountain, paysage, mount kinabalu
eiffel tower eiffel, tour eiffel, la tour eiffel, big ben, paris, blue mosque, eifel tower, eiffel tour, paris france

Table 3: Examples of the top 10 annotations of three approaches: PamirIA , One-vs-Rest and Wsabie, on
the Web dataset. Annotations in red+bold are the true labels, and those in blue+italics are so-called siblings.

Image PamirIA One-vs-Rest Wsabie

bora, free willy, su, orka, world-
wide, sunshine coast, bequia,
tioman island, universal remote
montagna, esperar, bottlenose
dolphin

surf, bora, belize, sea
world, balena, wale, tahiti,
delfini, surfing, mahi mahi

delfini, orca, dolphin,
mar, delfin, dauphin,
whale, cancun, killer
whale, sea world

air show, st augustine, stade, con-
crete architecture, streetlight, doha
qatar, skydiver, tokyo tower, sierra
sinn, lazaro cardenas

eiffel tower, tour eiffel,
snowboard, blue sky, empire
state building, luxor, eiffel,
lighthouse, jump, adventure

eiffel tower, statue, eiffel,
mole antoneliana, la tour eif-
fel, londra, cctv tower, big
ben, calatrava, tokyo tower
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