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The Bradley-Terry (BT) model [3] is a basic probability model for representing user preference or
ranking data, and it is also used for formulating classification problems [6, 10] in recent years. Estimation
methods of this model have been discussed from several contexts [6, 8], and most of the proposed methods
are based on the sum of weighted Kullback-Leibler (KL) divergences.

The purpose of our work is to interpret the estimation mechanism of the BT model and its related
models from a viewpoint of information geometry [2]. Based on this interpretation, we generalize the
BT model and its estimation method by using other divergences to improve robustness and accuracy of
estimation in practical scenes.

We first reformulate the estimation method in a framework of the em algorithm [1], which is an
information geometrical interpretation of the EM algorithm [9]. Observations for estimating some kinds
of probabilistic models including the BT model can be regarded to form “m-flat” data manifolds; those
are useful subsets in the space of probability models from a geometrical perspective. For example, an m-
flat manifold for the BT model is constructed from a set of comparison data between specific two objects
(items, players, etc.), and from comparison data between various pairs, the corresponding number of
m-flat manifolds are constructed. Intuitively speaking, an estimator for the BT model is obtained as “the
nearest point from all the m-flat data manifolds” and an objective function for the estimation is naturally
defined as the sum of weighted KL divergences. Such an optimization problem is effectively exploited
with the em algorithm because of the m-flatness. With this notion, we can geometrically interpret the
estimation process as a sequence of projections on a probability simplex. Since our em process does
not need any types of well-tuned numerical optimizers, it is as simple as previously proposed estimation
methods for the BT model. Note that our method is applicable not only to the BT model but also to
the other models which have similar m-flat data manifolds [7].

In addition, the m-flatness is compatible with a class of divergence called Bregman divergence [4],
which shows robustness against small sample sets and outliers in usual statistical inference and includes
the KL divergence as a special case. By using the m-flatness, we generalize the estimation method based on
the um framework [5], which is an em-like algorithm based on the Bregman divergence. Unfortunately, our
proposed method is not always tractable in calculation because it needs non-linear optimizers. However,
a type of Bregman divergence that we call η-divergence has a good property which allows us to estimate
model parameters without any numerical optimizers in the same manner as the KL divergence. Our
current experimental results show that the sum of weighted η-divergences is flexible enough to improve
accuracy of the conventional estimation methods.

In our presentation, we visualize a geometrical interpretation of our em estimation procedure based
on the weighted KL divergences. Then, we generalize it based on the weighted η-divergences, and
experimentally show improvement of estimation results.
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