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LOO and k -fold cross validation are widely used and effective model accuracy evaluation methods but suffer from 

the high computational load associated with the required training of multiple models. Such an issue has been solved 
for LOO in [1], where the concept of Virtual LOO has been suggested. There, accuracy is estimated without 
requiring re-train of different models (parameters and performance are estimated by relying on leverages).  

Based on those outcomes, we provide a not trivial extension of the virtual LOO approach to generate a virtual 

estimate of the k -fold cross validation method for model assessment. Again, the estimation process is virtual in the 

sense that no training phases are required to evaluate the k -fold cross validation performance of the model. 

Removal of a sample: Virtual LOO 

The operational framework is the traditional one of regression analysis with N      NNN Zyy ,,,, 11 xx   i.i.d. 

samples  y,x , dRx , Ry   used to estimate the unknown  xf  function with the parameterized family of 

models   pRg θθx ,, . We assume the traditional additive signal plus noise framework    xfy ,   being a 

zero-mean random variable accounting for the noise. The performance figure of merit is the squared error (SE) but 

other figures of merit can be easily considered rr
TL  , T denotes the matrix transposition operator and r  is the 

N dimensional column vector of residuals )( θ,xigyr ii  , Ni ,...,1 . 

Consider a linear model   θxθx,
Tg  and its least square solution   yXXXθ

T1T
o


ˆ  where y  is the 1N vector 

of the y s and X  the  dN   matrix containing the observed x vectors. Under the assumption that inputs are 

independent, XX
T  is a positive definite matrix. Removal of a generic i -th sample of the training set provides the 

new data set    iN
i

N yZZ ,\
)(

ix
 ( \  is the set subtraction operator) from which we derive a new parameter 

vector (or model)   

  i
T
ii

T
o

i)(
o xxxXXθθ

1ˆˆ   ir      (1) 

  

with an associated ( 1N ) residual vector   oi)(
o

i)(
o

i)(
θθXrθXyr ˆˆˆ   . The effect of the i -th training 

sample on the sole residual is [1],     
ii

ii
i

h

r
r




1

)(          (2) 

where   i

1TT
i xXXx


iih  is the diagonal element of the orthogonal projection matrix   T1T

XXXXH


 . Said 

that, the virtual LOO estimate of LOO can be defined as  
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In the case of a non linear model we linearize it by considering a second-order Taylor expansion in the 

neighborhood of oθ̂  and evaluate it on i)(
oθ
ˆ :      θθJθgθx,g

i)(i)( ˆˆˆ,ˆ   x . The relationship holds under the 

assumption that withdrawal of a sample from the training set has a small effect on oθ̂ ; J is the Jacobian matrix of 

 θx,g . Under the previous assumption [1][3], H  to be considered is   T1T
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Multiple removal of samples: Virtual k -Fold Cross Validation 

Whereas the virtual LOO requires removal of a sample, the virtual k -fold cross validation needs to simultaneously 

remove   1,/  lkNl  samples and estimate the model performance. Unfortunately, we cannot simply iteratively 

apply removal of a sample l times and then use results (1) to (3) since removal of a sample has an impact not only on 
its residual but also on other residuals. As such, we need at first to derive the recurrent formula evaluating the impact 
of removal of the i-th sample on the residual of a generic j-th sample and then iterate such procedure up to l. Starting 
from (1) and considering the Sherman-Morrison matrix inversion lemma we derive that, 
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and ijh is the i,j-th element of H . Of course, when j=i (4) reduces to the (2). From the Sherman-Morrison Lemma, 

the effect of removal of the i -th sample on the projection matrix H  is 
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Having evaluated the full effect of the removal of a sample on all residuals we extend the procedure to evaluate the 

effects on H  induced by the removal of multiple samples. As such, having extracted )dim(t  samples ( t  is the 

vector containing the indexes of the previously removed samples), we recursively remove the additional i-th sample 
and obtain 
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At the beginning, when t  is void, (6) reduces to (5). Similarly, the procedure is applied to cover residuals and 

parameters updates and produces the recurrent expressions  
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Obviously, at the beginning, t is void and Eq . (7) and (8) reduce to (4) and (1), respectively.  

In the virtual k -fold cross validation case, NZ  is initially randomly split into k  disjoint subsets of size kN / . In this 

framework define jd , kj ,..,1  to be the vector containing the indexes of training samples that belong to the j -th 

subset. For each subset jd , we compute 
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ˆ  with Eq. (8) and the virtual k -fold cross validation estimate is 
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 where  
jj DD yX ,  are the kN /  training input-output pairs of the elements belonging to jd . 

The extension to non linear models follows the approach already introduced in the previous section; the H  to be 

considered in  equations (4-8) is   T1T
JJJJH


 . 

Results, together with mathematical details, will be presented at the workshop. 
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