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Modern approaches to category-level object or scene recognition usually follow the classical supervised
classification paradigm where, given some global feature extraction process, the feature vectors associated
with a number of positive and negative training pictures areused to train a classifier such as a support vector
machine. Once trained, this classifier can be used to classify test images using the corresponding feature
vectors. A key ingredient in these approaches is the design of the feature extraction process. A three-step
pipeline combining 1) non-linear local encoding, 2) local spatial pooling, and 3) concatenation of weighted
representations of neighboring regions of interest has emerged as a particularly successful feature extraction
module. These operations were used in early models of image recognition (and more recent related models),
like the neocognitron [3], convolutional networks [4, 6, 7,8, 12], the HMAX class of models [13], and Pinto
et al.’s object recognition model [11]. Powerful image descriptors like Lowe’sSIFT descriptor [9], the
GIST descriptor of Oliva and Torralba [10], theHOG operator of Dalal and Triggs [2] can all be viewed as
examples of this same three-step paradigm. The original bagof features model [14], thespatial pyramid of
Lazebnik et al. [5] and its variants [15, 16], extract features by applying sequentially two instances of the
three-step module to input images: first to image pixels to obtain local SIFT image descriptors, then again
to the resulting set of local descriptors to obtain the global image representation.

Here, we seek to find the best combination of bottom-level descriptors concatenation, encoding and pool-
ing for recognition within the popular spatial pyramid framework. Using denser sampling of bottom-level
descriptors, encoding nearby descriptors jointly by a sparse representation over a dictionary trained discrim-
inatively by approximatively minimizing a supervised logistic loss over the whole-image representation,
combined with max pooling and a linear classifier, yields thebest known recognition rate of85.6 ± 0.2 on
the 15 Scenes dataset, and the best recognition rate of75.2 ± 0.9 on the Caltech-101 dataset for a system
with a single feature type (with 30 training examples).

We also investigate whether the improvements obtained withsome specific combinations of steps and
classifiers (e.g., sparse encoding with max pooling and linear classification) can be factored into relatively
independent contributions from each deviation from the most simple framework. Performance of the
bag-of-features framework [17] has been improved dramatically by using more sophisticated coding
schemes [15, 16], pooling neighborhoods [5] or operations [16], or category-specific concatenation
weights [1], while retaining the same bottom-level module.We compare encoding steps that output either a
1-of-K binary code (hard vector quantization where the only nonzero component is the one corresponding
to the closest codeword in some codebook) or a continuous code (soft vector quantization or sparse coding).
For the second (pooling) step, the set of all codes are over the cells of a spatial pyramid are summarized
by a single feature vector, by taking either the average (average pooling) or the maximum value of each



feature (max pooling). We simply concatenate the vectors representing each cell of a three-level spatial
pyramid to form the input to the classifier, which can be either a linear SVM, or an intersection kernel SVM.
Results of cross-comparisons presented on Table 1 show two consistent patterns: (1) Max pooling almost
always improves results over average pooling, and dramatically so when a linear classifier is used, except
that results are not significantly different when hard quantization is used with an intersection kernel; (2)
irrespective of pooling and classifier, sparse coding performs better than soft quantization, which performs
better than hard quantization - the only exception being that soft quantization performs notably worse than
hard quantization when combined with max pooling and a linear classifier.

Method Caltech-101, 30 training examples 15 Scenes, 100 training examples
Average Pool Max Pool Average Pool Max Pool

Hard quant., linear 51.42 ± 0.91 [256] 64.26 ± 0.90 [256] 73.90 ± 0.87 [1024] 80.11 ± 0.53 [1024]
Hard quant., intersect 64.17 ± 1.02 [256] 64.26 ± 0.90 [256] 80.84 ± 0.35 [256] 80.11 ± 0.53 [1024]
Soft quant., linear 57.92 ± 1.54 [1024] 62.29 ± 1.38 [512] 75.63 ± 0.54 [1024] 76.83 ± 0.89 [1024]
Soft quant., intersect 66.12 ± 1.19 [512] 70.57 ± 0.97 [1024] 81.19 ± 0.40 [1024] 82.99 ± 0.73 [1024]
Sparse codes, linear 61.32 ± 1.26 [1024] 71.52 ± 1.13 [1024] 76.91 ± 0.57 [1024] 83.12 ± 0.56 [1024]
Sparse codes, intersect70.27 ± 1.29 [1024] 71.81 ± 0.96 [1024] 83.15 ± 0.35 [1024] 84.13 ± 0.45 [1024]

Table 1: Average recognition rate on Caltech-101 and 15-Scenes benchmarks, for various combinations of coding
schemes, pooling, and classifiers. Codebook size (inside brackets) is the one that gives best results between 256, 512
and 1024. Classifier is either a linear or an intersection kernel SVM. Linear and histogram intersection kernels are
identical when using hard quantization with max pooling (astaking the minimum or the product is the same for binary
vectors), but results have been included for both to preserve the symmetry of the table. (1) Max pooling almost always
improves results over average pooling, and dramatically sowhen a linear classifier is used. (2) Irrespective of pooling
and classifier, sparse coding performs better than soft quantization, which performs better than hard quantization - the
only exception being that soft quantization performs worsethan hard quantization when combined with max pooling
and a linear classifier.

Finally, we give a theoretical analysis of pooling schemes,backed by experiments, which shows that max
pooling should be preferred over average pooling when features have a low probability of being active
(e.g., with large codebooks) and the pool cardinality is large enough. We also demonstrate that the optimal
cardinality over which to perform max pooling is not always the full cardinality of all available samples in
the pool.
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