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Probabilistic graphical models are widely used for representing dependencies between ran-
dom variables in a wide variety of problems such as error-correction coding, information retrieval
and computational systems biology. The underlying probability functions described by graphi-
cal models typically take on the form of the joint probability density function (PDF) of many
continuous random variables, or the joint probability mass function (PMF) of many discrete
random variables. For many real-world problems, graphical models for PDFs may present sev-
eral computational challenges, such requiring one to introduce latent variables into a model
in order to explain complex dependencies between observable variables and then having to
marginalize out these latent variables. Such models can often be non-identifiable, as there are a
potentially infinite number of possible latent variable models associated with any given model
defined over observable variables. Often, the difficulty of performing inference and learning un-
der such models increases significantly in such models so that approximate inference techniques
may be required.

Another possible limitation is that the joint PDF/PMF itself might not be appropriate for
some applications. In applications such as learning to rank, the cumulative distribution function
(CDF) is a probabilistic representation which arises frequently. As a probability measure over
inequality events of the type X ≤ x, the CDF lends itself to problems such as learning to rank
where the goal is to predict events of the above type. Examples of this type of problem include
web search and document retrieval, predicting movie ratings or predicting multiplayer game
outcomes with a team structure. In contrast to the canonical machine learning problems of
classification or regression, in learning to rank we are required to learn some mapping from
inputs to structured outputs in which multiple outputs are dependent for a given observation.
Here we may wish to model not only stochastic ordering relationships between variables, but
also statistical dependence relationships between variables.

To address the above issues, we present the cumulative distribution network (CDN) as a
novel graphical model which describes the joint CDF of a set of variables (Huang and Frey 2008;
Huang and Frey 2009a). In contrast to most previous graphical models, marginalization in
CDNs involves tractable operations such as computing limits and computing the derivatives
of local functions in the graph. In contrast to undirected graphs, the global normalization
constraint in a CDN can be enforced locally for each function in the graph. We will show
that the rules for assessing conditional independence in CDNs are unlike those for directed,
undirected and factor graphs. We will show that the conditional independence criteria for
CDNs defined over continuous variables in fact corresponds to those of bi-directed models for
continuous variables (Richardson 2003). As a result, CDNs are a continuous parameterization
for bi-directed models which allow us to represent complex dependencies between observable
variables in a model with appropriate latent variables marginalized out. We will provide both
sufficient and necessary conditions for a CDN to have a dual representation as a factor graph
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with latent variables, so that the joint probability model described by the CDN exhibits the same
conditional independence relationships as that of a factor graph with additional latent variables
introduced. This will then allow us to construct multivariate extreme value distributions for
which both a factor graph and CDN representation exists.

We will discuss the problem of performing inference under CDNs, which we will show corre-
sponds to computing derivatives of the joint CDF. We will describe a message-passing algorithm
for inference in CDNs called the derivative-sum-product algorithm and demonstrate its use on a
problem of structured ranking in multiplayer gaming. We will then present a general framework
for structured ranking learning in which we are given many observations of partial orderings
over many objects to be ranked and we wish to learn to rank these objects whilst account-
ing for a high degree of dependency between outputs (Huang and Frey 2009a). Results will
be presented for applications of structured ranking learning to the problems of document re-
trieval (Burges et al. 2005; Liu et al. 2007; Xia et al. 2008) and regulatory sequence discovery
in computational biology (Berger et al. 2006; Chen et al. 2007; Huang and Frey 2009b). For
this class of applications, CDNs provide a graphical structure which includes previous proba-
bilistic models for rank data, such as the Plackett-Luce, Bradley-Terry models (Marden 1995)
and the methods of (Burges et al. 2005; Chen et al. 2007; Xia et al. 2008).
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