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Deep belief networks(DBN) [1] composed from layers of restricted boltz-
mann machines have proven a very successful technique in machine learning,
demonstrating state of the art performance in learning tasks as diverse as hand-
writing recognition, dimensionality reduction and the modelling of temporal
sequences [1, 2, 3]. Despite their conceptual simplicity and ability to learn com-
plex non-linearities, the significant time and space complexity of these methods
has thus far restricted their use to low dimensional problem domains and small
datasets.

In this work we introduce a sparse formulation of the problem which is able
to exploit domain-specific locality in the inter-layer connections. This signif-
icantly reduces memory requirements and is exploited to speed up both the
unsupervised contrastive divergence training and the back-propagation used for
supervised fine-tuning. Additionally, we show how these modifications can be
used to partition the problem for solution over a large number of machines, and
allow DBNs to be used in high-dimensional problem domains with very large
quantities of training data.

Specifically, we demonstrate our methods on a challenging dataset of medium-
resolution video where the task is to build a temporal next-frame predictor.
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