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We present a hierarchical model that combines latent variable models of local distributions into
a tree dependency structure. Two algorithms for training the model are proposed and a way to
apply it to human pose prediction. It builds on the previous work on Spectral Latent Variable
Model (SLVM) by hierarchically partitioning the space and building mappings between the differ-
ent levels of the hierarchical latent representation. An overall likelihood of the joint model can be
computed by integrating out the latent hierarchy. Direct optimization, a top-down and a bottom-up
learning scheme have been investigated, leveraging the availability of mappings in both directions
(latent↔ambient) in SLVM. For motivation, consider the case of a running person. The intrinsic
dimensionality of a runner is, in the limit, the one of a 1d harmonic oscillator. But this minimalist
model does not account for stylistic differences or for the lack of synchronization inherent of many
subjects or scenes. What seems appropriate is a hierarchy, with the strongest (lowest-dimensional)
model of correlation at the top (say), the weakest high-dimensional model of limbs moving unre-
strictedly at the bottom, and various degrees of flexibility in-between (e.g. models with regularities
among subsets of variables for each leg or arm, but without global constraints among all of them).
The hierarchy can be used for the visual inference of 3D human body pose from images, either by
estimating several representation levels simultaneously, or by automatically adapting the level of
complexity to match the statistical regularity of the observation.

Spectral Latent Variable Models (SLVM): Assume vector-valued points in ambient space Y =
{yi}i=1...N captured from a high-dimensional process, and corresponding latent space points X =
{xi}i=1...N , initially obtained using a spectral, non-linear embedding method like ISOMAP, LLE,
Hessian or Laplacian Eigenmaps, etc. We model the joint distribution over latent and ambient vari-
ables as: p(x,y) = p(x)p(y|x). The latent space prior p(x) is modeled as a non-parametric kernel
density estimate, with covariance θ: p(x) = 1

K

∑K
i=1 Kθ(x,xi). In the model, we assume that am-

bient vectors are related to the latent ones using a nonlinear vector-valued function with parameters
W and noise covariance σ: p(y|x,W, σ) ∼ N (y|F(x,W), σ), where N is a Gaussian distribu-
tion with mean F and covariance σ. F is a generalized regression model: F(x,W) = Wφ(x)
with φ(x) = [Kδ(x,x1), . . . ,Kδ(x,xM )]>, and kernels with covariance δ placed at an M-size
subset of xi. W is a weight matrix of size DxM .

The ambient marginal is obtained by integrating the latent space. The evidence, as well as
derivatives w.r.t. model parameters, are computed using a simple Monte Carlo (MC) approxi-
mate using, say S, samples from the prior. This gives the MC estimate of the ambient marginal:
p(y|W, σ) =

∫
p(y|x,W, σ)p(x)dx ≈ 1

S

∑S
s=1 p(y|x(s),W, σ). The latent space conditional

is obtained using Bayes’ rule: p(x|y) = p(y|x)p(x)
p(y) = S

K
p(y|x)

PK
i=1 Kθ(x,xi)PS

s=1 p(y|x(s),W,σ)
. For pairs of ambi-

ent data points j and MC latent samples i, we abbreviate p(i,j) = p(xi|yj). The choice of prior
p(x) influences the membership probabilities. We can compute either the conditional mean or the
mode (better for multimodal distributions) in latent space, using the same MC integration method:
E{x|yn,W, σ} =

∫
p(x|yn,W, σ)xdx =

∑K
i=1 p(i,n)xi, where imax = arg maxi p(i,n). The

model contains the ingredients for efficient computation in both latent and ambient space: a prior
in latent space, an ambient marginal, the conditional distribution from latent to ambient space,



Figure 1: Left Latent spaces in a hierarchy trained with human poses. Right SLVM nodes.

and vice-versa. Latent conditionals given partially observed y vectors are easy computable – the
conditional distribution of y is Gaussian and unobserved components can be integrated analyti-
cally (see [2] for details). The model can be trained by maximizing the log-likelihood of the data:
L = log

∏N
i=1 p(yn|W, σ) =

∑N
n=1 log{ 1

S

∑S
s=1 p(yn|x(s),W, σ)}. Maximizing the likelihood

provides estimates for W, σ. The model is learned using EM: int the E-step we compute the mem-
bership probabilities of latent points generating datapoints, p(i,j). In the M-step we learn the sparse
mapping and its noise model (W, σ), by solving a weighted regression problem [2].
Initialization: The initialization is identical for all learning procedures. We partition the data
space and assign each part to a leaf. At each level of tree we compute non-linear embeddings
using the datapoints representing subsets of variables in the level below, in order to obtain the data
for the level above. We always combine (complementary) latent representations corresponding to
the same original datapoint and don’t crossover between different ones. Once the data at each
node is available, KDE approximations to marginals (latent ‘priors’ in SLVMs) are constructed and
mappings to the level below are learned (i.e. learn individual SLVMs for all parent-child node pairs).
Forward and posterior learning: The classical problem with latent variable models is they don’t
have data to easily train them. We use a form of Markov chain EM by keeping a KDE at the root
fixed, sampling from it and propagating samples through the hierarchy. We then use the samples as
data to train the SLVM nodes. Alternatively we can do a bottom-up learning taking advantage of
the possibility of computing the expectation of the latent variables given the data. We can use these
expected latent coordinates to populate the data in the higher levels of the hierarchy. With the nodes
populated with data an EM procedure (SLVM) is used to refine the mappings between the nodes.
Pose prediction: This model can be used for pose estimation by training predictors (e.g. ridge
regressor) between image features and latent variable coordinates corresponding to their poses at
each level in the hierarchy. One possible choice for latent variable data used to train the predictors
is the expectation of the training poses for that node. Another choice is the coordinates of the
dimensionality reduction of the corresponding poses obtained in the initialization.
Topic: visual processing and pattern recognition. Preference: poster/oral
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