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In the context of supervised learning of classifiers, label noise or labeling errors in the training data
can affect significantly the performance of the learning method. This is particularly true in large margin
hyperplane-based methods where the classifier is trained by minimizing a function that penalizes quantita-
tively how far a training point is from the ’correct’ side of the hyperplane. In this case (as we will show
empirically later) a few mislabeled data points in the training set could lead to a significant drop in classifi-
cation performance, even when regularization is properly taken into account. This problem arises in basically
any learning domain where the reliability of the training data (particularly the labels) has been compromised.

This problem has been approached in the context of robust statistics where the goal is to create estimators
that can properly handle small deviations from the basic model assumptions. For example, the median is a
simple robust estimate of the center of the distribution. In machine learning, the popular RANSAC (Random
Sample Consensus)[1] method is an example of model estimation that is robust to some outliers in the data.

In this work we explore this problem in the context of large-margin classifiers. We use several large-
margin formulations to take into account data points where the corresponding label has a high probability
of being wrong given all the training data. The problem can be seen as a SVM-like formulation where k

(provided by the user) represents the number of training points that are required to be misclassified with a
large misclassification penalty M .

The resulting formulation can be written as the mixed integer programming (MIP) (presented next). We
have m datapoints in the n-dimensional real space R

n which are represented by the m × n matrix A. The
datapoints are in two classes A+ or A− and the class labels of each data point is specified by a given m×m

diagonal matrix D with plus ones or negative ones along its diagonal.
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where C is the parameter with C > 0, y ∈ R
m is the classification error associated with each datapoint. e is

a column vector with all ones. w is the normal to the bounding planes:x⊤w = γ +1 and x⊤w = γ − 1. Here
the optimal solution(s) aim to assign the large M penalties to the points that are most unlikely to belong
to its (labeled) class.

We can also think of the opposite formulation, where the classification errors of k points are allowed to
be ignored in the objective function. This leads to the following formulation:
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For both formulations presented above we explored several variations (depending on the cos function
and regularization used) and relaxations that lead to very efficient approximate solutions including several
convex relaxations: Semidefinite programming (similarly to the one presented in [2], Quadratic programming
and Linear programming relaxations as well as several non-convex formulations and in particular we are very



encouraged by an effective branch and bound strategy that can be used to find good solutions when both
the cost function and the regularization term have Gaussian priors (L2 regularizations) and the problem
becomes an Integer least squares formulation.

In order to test the effectiveness of the original formulation, two hundred samples are generated from two
Gaussian distribution, one hundred samples in each class. Results are shown in Fig. 1, where we can see the
the outliers can be identified correctly in this toy data set.
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(a) Decision boundary of standard svm
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(b) Result of the MIP problem

Fig. 1. Five data points in each class were manually moved away from their class center to consider them as (unknown)
outliers. Figure shows toy data and the decision planes of (a) a standard SVM formulation (b) our original formulation

We now explore real datasets labeled 1-4 where text fragments from medical records are labeled to
identify the appearance of certain medical conditions using a bag-of-words-like representation (congestive
heart failure, smoking history, joint revision, and contraindication to a betablockers respectively, but more
general concepts can be considered as well) and k < 2% of the available data. These results indicate that
the original MIP formulation is effective in both improving the classification error (Err column) and also at
reducing the number of support vectors necessary to achieve better performance (num of SV column). The
solution to the optimization problem includes identification of potentially mislabeled data that can be used
as a feedback mechanism for the labeling process. Current work includes the design of convex/non-convex
relaxations to the two problem formulatios above.
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(no. examples × dims) SVM Err SVM num of SV SVM optC MIP Err MIP num of SV MIP optC

dataset 1 (219 × 103) 0.0548 18 0.1 0.0183 4 1

dataset 2 (584 × 103) 0.0240 22 10 0.0171 11 100

dataset 3 (582 × 103) 0.0258 30 1 0.0172 11 10

dataset4 (269× 103) 0.0967 26 100 0.0409 12 100

Table 1. Standard SVM results (columns 2-4) and new formulation results (columns 5-7)
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