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Recent advances in biotechnology have leveraged laboratory techniques to generate syn-
thetic biological representations of information. Here, we show how these algorithms on real
biological materials can be used to build a learning system that discriminates sequence patterns.
We show how a kernel classification algorithm can be implemented in vitro in order to discrimi-
nate a new DNA sequence based upon pre-labeled training sequences. In particular, similarities
between DNA sequences can be interpreted as elements of a positive definite kernel matrix.

Definition (DNA kernel): When N different species of single stranded DNA (ssDNA(i) for
i ∈ {1, ..., N}) and complementary single stranded DNA (cssDNA(i) for i ∈ {1, ..., N})
have the same number of molecules, their hybridizations generate a DNA kernel K matrix
whose Kij ≡ |dsDNA(i, j)| element is defined by the amount of double stranded DNAs
(dsDNA(i, j)), consisting of hybridized ssDNA(i) and cssDNA(j).

We investigate when this kernel matrix is positive definite and can be interpreted as a geo-
metrical mapping into feature space. To do this, we analyze the hybridization process to see
how the amounts of double strands are related. Recent thermodynamical models of DNA hy-
bridization use binding energies, lengths of binding sites and temperature to predict hybridiza-
tion. We show under certain conditions the hybridizations process can generate a positive
definite kernel, and then, the well-established kernel concepts provide natural geometrical in-
terpretation on operations out of similarity information.

Like other kernel methods, we represent everything as the linear expansion of data in the
feature space, and the spanning parameters are the parameters to be learned. In our setting,
they are represented by the amount of single stranded DNA sequences. Discrimination will be
done by counting to which labeled strands testing strands attached more. This can be described
by the following equation.
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where αi is the population of i’th sequence. Our only assumption is the amount of double
strands is bilinear to the amount of each single, which will not be violated in transient state
until double strands are not saturated.

Learning implementation to optimize parameters is iterative hybridization and selection.
Selection is a process of selecting hetero-labelled double strands. In other words, we select
and keep double strands whose constituents’ labels are different, and throw away others. With



some scaling and other simple selecting processes, we can show this iterative process eventually
make the population sets α{−1} of class −1 sequences and α{1} of class 1 sequences approach
to the solution of the following optimizing criterion.
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where, Φ{i} is the data matrix in feature space andNi is the number of data in class i ∈ {−1, 1}.
As a result, it turns out that the learning process is finding two most closest vectors one of which
is in the convex cone of each class in the feature space. They become the representatives of two
classes and we can also interpret discrimination as measuring to which class’s representative
test datum is closer by angle.

Different scheduling of hybridizing temperature yields different distribution of double strands
and control the sparsity of kernel matrix which works as a kernel parameter. It’s application
to several sets of biological data showed the performance is similar to the best performance of
SVMs.
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Figure 1: [Discrimination of 2-D space] Discrimination of 2-D space when binding energy is set anti-proportional
to the distance between two points. The figures show the sparseness of kernel matrix is controlled by temperature
schedule. Temperature control for kernel formation is (a) 80oC constant, (b) 80oC to 50oC, and (c) 80oC to 20oC.
The range of binding energies between training samples are scaled to have between −5.9 ∼ −8.0 (kcal/MBP),
which are within the range of real binding energy.
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