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Much past work in control learning, such as approximate dynamic program-
ming [4] or reinforcement learning [5] has assumed that the underlying repre-
sentation is hand-engineered. In the past several years, we have undertaken a
research program exploring a variety of methods for automatically construct-
ing basis functions, applying ideas from manifold learning in machine learning
and harmonic analysis. In this paper, we briefly survey a variety of directions
that are emerging in the community on frameworks for automatically learning
both representation and control in Markov decision processes. The approaches
can broadly be divided into two classes of methods: those that construct basis
functions that are sensitive to the reward function and the specific policy being
followed [3], versus approaches that depend only on the geometry of the state
(action) space [2]. These two approaches can both be viewed as constructing
representations by analyzing the effect of operators on the space of functions on
a state (action) space. Broadly, there are two general principles for constructing
representations in this manner: dilation methods, which include Krylov bases
as well as multiscale wavelet methods [1], and diagonalization methods which
work by constructing eigenvectors (or eigenfunctions). Both these approaches
essentially can be viewed as finding invariant subspaces of the operator.

We will describe an algorithmic framework for simultaneously learning rep-
resentation and control called representation policy iteration (RPI). This frame-
work modifies the traditional policy iteration algorithm by including an outer
loop that constructs basis functions that are either reward-sensitive or indepen-
dent of rewards. A variety of operators can be used to construct basis functions:
one approach is to use a graph connecting nearby points on the sampled state
(action) space manifold; another approach is to construct an approximation of
the Bellman backup operator. Diagonalization methods work with self-adjoint
(symmetric) operators. Dilation methods include multiscale diffusion wavelet
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Figure 1: Left: Samples from a series of random walks in an inverted pendulum
task. Due to physical constraints, the samples are largely confined to a narrow
region. One approach to basis construction methods is to diagonalize a random
walk operator on a graph connecting nearby samples on such point-sets. Right:
An approximation of the value function learned by using PVFs.

methods that construct a hierarchy of basis functions, as well as Krylov methods
that dilate the Bellman backup operator. Theoretical properties and experimen-
tal results comparing these approaches will be presented. A major challenge for
future research is how to scale these approaches to large MDPs (e.g Tetris or
backgammon), which have so far only been solved with hand-engineered fea-
tures.
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