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1 Introduction

Recently, gradient descent based optimization procedures and their functional gradient based boost-
ing generalizations have shown strong performance across a number of convex machine learning
formulations. They are particularly alluring for structured prediction problems due to their low
memory requirements [5], and recent theoretical work has show that they converge fast across a
wide range of problems in terms of both optimization and generalization [5, 10, 11]. Importantly,
they have effective and efficient nonlinear generalizations in the form of functional gradient boosting
algorithms. These generalizations have seen success in a number of real-world problems [6, 3].

Unfortunately, these functional gradient boosting algorithms are often inefficient in terms of their
representation: the algorithm adds a new nonlinear base learner to its hypothesis at each iteration,
regardless of whether that new base learner already correlates strongly with a previous learner. Re-
cent work in bundle methods for machine learning [12] has shown bundle optimization to be very
efficient in terms of their representation, particularly for SVM learning problems [2]. In this pa-
per, we expand on the idea of representation efficiency by generalizing bundle methods to function
spaces using techniques from functional gradient boosting. In our derivation, we discuss general-
izing bundle methods to function spaces [1]. In particular, we derive the functional bundle and use
regularization path arguments of [9] to provide a straightforward and efficient method for optimizing
it. This bundle optimization acts to more efficiently utilize each nonlinear learner. We demonstrate
our approach on binary classification problems using the MNIST data set as well as on a structured
prediction problem known as Maximum Margin Planning [4]. In all cases, we successfully learn the
desired concept using only a small nonlinear function representation.

2 Derivation

Let our optimization problem take the following form:

minimize R[f ] =
N∑

i=1

li(f(xi))

s.t. ‖f‖1 ≤ c, (1)

where f is in the linear span of a hypothesis space (base learner space) H, and the norm measures
the L1 size of the coefficient expansion of f . Specifically, if f =

∑
j αjhj with hj ∈ H, then

‖f‖1 =
∑

j |αj |.

Following operations analogous to those of linear bundle methods [12], at each iteration, we find the
functional gradient of the objective and use the set of functional gradients that have been encountered
up to this point to lower bound the function. Denote the set of functional gradients computed at
points ft by gt =

∑
i ηi

tδxi
. Then the lower bound takes the following form:

R[f ] ≥ max
t

{
R[ft] + 〈gt, f − ft〉

}
= max

t

{
R[ft] +

N∑
i=1

ηi
t

(
f(xi)− ft(xi)

)}
. (2)

1



Figure 1: The first three images show the planned (learned) path (cyan) and the desired path (red)
overlaying the learned cost across a hold-out region. The final image depicts the progression of
objective values across iteration.

Using the regularization path arguments of [9], optimizing this lower bound subject to the constraint
‖f‖1 ≤ c is (approximately) equivalent to simply running functional gradient boosting for c/ε
iterations, where ε > 0 is a small step size. When we to do so, however, we’d find that each
functional gradient we evaluate is a functional gradient we’ve already seen:

∇f max
t

{
R[ft] +

N∑
i=1

ηi
t

(
f(xi)− ft(xi)

)}
=

N∑
i=1

ηi
t∗δxi

= gt∗ ,

where t∗ is the maximizing t. We can therefore optimize the bundle efficiently without training
additional base learners.

3 Preliminary experiments

Problem 4 vs 5 0 vs 1 3 vs 6
Accuracy 98.5 99.7 99.2

Size 7 7 7

We first demonstrate the performance on Regularized Least Squares Classification [8] using binary
classification problems drawn from the MNIST data set. The table above shows that by choosing c
appropriately, we can constrain the hypothesis representation to remain small while retaining good
classification accuracy on these problems. In this case, we found high accuracy using only 7 neural
network base learners, each consisting of only 4 hidden nodes.

We additionally implemented our algorithm for a imitation learning structured prediction problem
known as Maximum Margin Planning [4]. Following the LEARCH algorithm [7], for this problem
we optimize the functional bundle using exponentiated functional gradient descent to attain an ex-
ponentiated hypothesis of the form exp{

∑
i αihi}. Figure 1 depicts the generalization performance

under the functional bundle method. In this case, the algorithm successfully learned the concept
using a final cost function consisting of only 4 neural network base learners, each consisting of 25
hidden nodes.
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