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Abstract

Recently, there has been a lot of interest around multi-task learning
(MTL) problem with the constraints that tasks should share common fea-
tures. Such a problem can be addressed through a regularization frame-
work where the regularizer induces a joint-sparsity pattern between task
decision functions. We follow this principled framework but instead we
focus on `p − `2 (with p ≤ 1) mixed-norms as sparsity-inducing penalties.
After having shown that the `1 − `2 MTL problem is a general case of
Multiple Kernel Learning (MKL), we adapted the available efficient tools
of solving MKL to the sparse MTL problem. Then, for the more general
case when p < 1, the use of a DC program provides an iterative scheme
solving at each iteration a weighted `1 − `2 sparse MTL problem.

Work description

Multi-Task Learning (MTL) is a statistical learning framework which seeks at
learning different models in a joint manner. The idea behind this paradigm is
that, when the tasks to be learned are similar enough or are related in some
sense, it may be advantageous to take into account these relations between tasks.
Several works have experimentally highlighted the benefit of such a framework
(Caruana, 1997).

In this work, we consider that tasks to be learned share a common subset of
features or kernel representation. This means that while learning the tasks, we
jointly look for features or kernels that are useful for all tasks. A way to address
this issue is to use a regularization principle and thus minimizes a regularized
empirical risk while the regularization term favors a common sparsity profile in
features for all tasks (Argyriou et al., 2008; Obozinski et al., 2007).

This paper also considers this regularization principle for joint feature selec-
tion across tasks. Our contribution is two fold. First we consider the multi-task
learning problem in a SVM framework with a kernel representation. The pro-
posed algorithms rely on sparsity-inducing (`p − `2) mixed-norms regularizers
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which encourage sparse kernel selection among a prescribed set of kernels. This
set of basis kernels can be made large enough at will, gathering information
about the different sources of the input samples. From this framework, it comes
up the convex case turns into a multiple kernel learning problem. At the second
stage, we extend the analysis to a non-convex regularization term in order to
gain in sparsity The difficulty raised by this formulation is tackled via a DC
programming (Horst & Thoai, 1999).

Framework and algorithms

Suppose we are given T classification tasks to be achieved from T different
datasets {xi,1, yi,1}n1

i , · · · , {xi,T , yi,T }nT
i , where any xi,· ∈ X and yi,· ∈ {+1,−1}

and ni denotes the ith dataset size. For a given task t, we are looking for a deci-
sion function of the form: ft(x) =

∑M
k=1 ft,k(x) + bt ∀t ∈ {1, · · · , T} where

any function f·,k belongs to a Reproducing Kernel Hilbert Space (RKHS) Hk

of kernel Kk, bt is the bias term and M is the number of basis kernels provided.
To learn the decision function ft of each task under the constraints that all
these functions share a common sparse profile of their kernel representation, let
consider the following optimization problem:

min
f1,··· ,fT

C ·
∑

t,i

L(ft(xi,t), yi,t) + Ω(f1, · · · , fT )

where L(ft(x), y) is a loss function, Ω a sparsity-inducing penalty function in-
volving all ft and C a trade-off parameter that balances both antagonist objec-

tives. We propose the penalty function Ωp,q(f1, · · · , fT ) =
∑M

k=1

(∑T
t=1 ‖ft,k‖q

Hk

)p/q

with typically p ≤ 1 and q ≥ 1.

Easy case Let p = 1 and q = 2 and consider a hinge loss function. Therefore,
it can be shown this multi-task SVM problem is strongly related to the Multiple
Kernel Learning (MKL) problem. Especially, it can be shown that the problem
boils down to solve T SVM tasks over a kernel defined as a convex combination
of the M kernels (k(x) =

∑M
k=1 dkkk(x), dk ≥ 0,

∑
dk = 1). The `1-type penalty

encourages the vanishing of some coefficients dk. Hence, an efficient algorithm
is derived based on off-the-shelf MKL solvers (Rakotomamonjy et al., 2008).

Non convex case (p < 1) To address this case, the `p penalty is decomposed
as a difference of two convex functions that is g(u) = ‖u‖p = |u| − (|u| −
|u|p). Using the DC programming (Horst & Thoai, 1999), we establish after few
algebras that the optimisation problem can be solved iteratively where at each
iteration, we resolve a weigthed version of the `1− `2 problem. The weigths are

proportional to the inverse of the norm ‖f·,k‖ =
(∑T

t=1 ‖ft,k‖2Hk

)1/2

.
The extended version of the paper provides empirical evidences that show the

benefit of the proposed approaches and algorithms. These experimental results
show the improvment of sparsity with compelling classification performances.
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