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Abstract

Analyzing and understanding the structure of social networks and other real-world graphs
has become a major area of research in the field of data mining. An important problem
setting is the creation of realistic synthetic graphs that resemble real-world social networks.
While a range of efficient algorithms for this task have been proposed, current methods solely
take the network topology into account ignoring any node labels. By applying concepts from
relational learning we propose a probabilistic approach to synthetic graph generation with
node labels.

1 Generation of real-world graphs

There are various motivations for the generation of synthetic graphs. Here, we are interested in two types
of graph generation: First, given a graph G, we would like to be able to perform graph anonymization, that
is to generate a graph G1 of the same size (number of nodes) as G. The objective in graph anonymization
is that G1 share topological properties and exhibits similar node labels as the original graph G. Second,
given a graph G, we would like to synthesize a larger graph G2 of size >> G that is similar to G. Again this
synthesized graph shall be similar in terms of topology and labels and additionally exhibit typical properties
of large real-world networks, such as a small diameter.

Traditional models for generating graphs are rather simple. For example the Erdös-Renyi model [1] only has
the edge probability pe as a single parameter. Another prominent graph generation model is preferential
attachment [2], in which new nodes prefer to attach to existing nodes with high degree. A more recent
approach, KronFit [3], is based on fitting an N1 ×N1 probabilistic initiator matrix Θ to the original graph
and approximating it by iteratively computing the Kronecker product of Θ with itself. However, as in real-
world graphs node labels usually correlate with topology, it would be desirable to have models that consider
the generation of labeled graphs.

Our approach towards labeled graph generation builds upon concepts from relational learning. A starting
point for our method development is the Infinite Relational Model (IRM) [4, 5].

2 Infinite Relational Model

The underlying principle of this family of models is to infer a block stochastic model of graph structure.
The goal is to partition relations in an observed network by assigning nodes to clusters. Nodes that share a
similar connectivity structure and similar labels are grouped together in the same clusters which leads to an
informative representation of the underlying network structure. The IRM allows for an arbitrary number of
clusters by deploying a Dirichlet process on the cluster variable z. The probability of a relation Ri,j between
two nodes i and j is entirely determined by their cluster membership

p(Ri,j |zi, zj) = Bernoulli(Ri,j |η(zi, zj)), (1)

where Ri,j is the relation status between node i and j, either exhibiting a link (true) or not (false). In an
IRM, the prior probability of η(zi, zj) only depends on a shared Beta distributed prior, which is identical for
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all pairs of clusters
η(a, b) ∼ Beta(β1, β2), (2)

where a and b represent two clusters and β1, β2 are hyperparameters of the Beta distribution (Beta), hence
influencing how likely relations between clusters are.

We represent node labels as Nf independent binary features, attached to every node i, Fi = {Fi,1, . . . , Fi,Nf
}.

The features of node i are Bernoulli distributed

P (Fi|zi) =
Nf∏
f=1

Bernoulli (Fi,f |θ(zi)f ) , (3)

where similar to the relation probabilities, the feature probabilities θ(zi)f depends on the cluster assignment.
Again a beta prior is put on the feature probabilities

θ(zi)f ∼ Beta(Θf
1 ,Θ

f
2 ), (4)

which is chosen to reflect the data statistics, i.e. how many nodes overall have a specific feature set on or
off.

Once the cluster distribution fits the original graph, a random graph can be generated by straightforwardly
sampling labeled nodes and relations from the resulting model. The block structure of a network drawn from
the IRM nicely resembles community structures present in the original graph. However, due to the fact that
the between cluster edge probabilities η(a, b) are sampled mutually independent for each pair of clusters a
and b, artificial graphs generated by the IRM do not capture other statistical patterns of connectivity present
in real-world graphs. For example, to realistically model the degree distribution it may be desirable to have
clusters that account for the existence of a small number of nodes with high degrees (hubs) and a larger
number of nodes with low degrees.

3 Infinite Network Model

In order to better model global connectivity patterns of real-world graphs, we propose the Infinite Network
Model (INM) which generalizes the IRM such that every cluster carries an individual “connectivity prior”
in form of a Beta distribution. We assume that the probability of a relation between any two clusters a and
b calculates as the product of the two respective Beta distributions.

η(a, b) ∼ Beta(βa
1 , β

a
2 )Beta(βb

1, β
b
2). (5)

To complete this extra level of hierarchy, we put Gamma priors on the beta parameters of every cluster a.
βa

1 ∼ Γ(k1, s1), βa
2 ∼ Γ(k2, s2), ∀ clusters a. (6)

As a result of this connectivity prior, the model not only describes the interaction probability between two
clusters, but also whether members of a cluster are more or less likely to form links to any other cluster in
the network. That means that the INM has to ability to describe clusters of low or high connectivity, and
hence low or high degrees.

In extensive experimental evaluation using real world graphs of different sizes we demonstrate the ability
and performance of the INM model. Graphs generated by the INM show realistic topological properties,
such as degree distribution and graph spectrum, as well as node labels capturing the original graph. The
additional flexibility introduced by the INM yields a significant improvement that is most pronounced when
degrees and labels in the original graph exhibit correlation. In comparison to existing approaches our model
outperforms state-of-art methods for both, graphs with and without node labels.
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