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Over recent years, graph kernels have grown to become an important branch of graph mining. Their fundamental
purpose is to represent a graph by features in a reproducing kernel Hilbert space. While most graph kernels derive
these features by counting particular types of subgraphs, such as walks, shortest paths, subgraphs of fixed size k
or subtrees (Kashima et al., 2003; Gärtner et al., 2003; Borgwardt & Kriegel, 2005; Borgwardt et al., 2007; Bach,
2008), recently, a group theoretical approach was proposed and shown to have state-of-the-art performance (Kondor &
Borgwardt, 2008). However, both approaches have limitations: in counting subgraphs, the graph-theoretic approach
completely ignores the relative position of subgraphs within the graph, while the algebraic approach suffers from
the fact that it is restricted to unlabeled graphs, which are rare in applications. In this work, we overcome these
two limitations by defining a new group-theoretic approach that allows both for labeled subgraphs and considers the
relative position of subgraphs.

Let us first introduce some notations. Let G be a directed weighted graph of n vertices. We represent G by its
adjacency matrix A ∈ Rn×n, where [A]i,j ∈ R is the weight of the edge from vertex i to vertex j. Sn denotes the
symmetric group of degree n. Given a function f : Sn → R, the group structure suggests defining the left–translate
of f by π ∈ Sn as fπ : Sn → R, fπ(σ) = f(π−1σ). In terms of any complete set of inequivalent irreducible
representations {ρλ}λ ` n of Sn the Fourier transform of a function f : Sn → R is defined as the sequence of
matrices f̂(λ) =

∑
σ∈Sn f(σ) ρλ(σ), λ ` n. Of the several properties of ordinary Fourier transformation inherited

by such generalized Fourier transforms, we are particularly interested in the translation theorem, which, coupled
with the unitarity of ρλ(π), tells us that the matrices â(λ) = f̂(λ)† · f̂(λ), λ ` n are translation invariant.

Kondor and Borgwardt (2008) show that if we encode the adjacency matrix in the function fA(σ) = Aσ(n),σ(n−1),
then permuting the vertices of G by π transforms fA exactly into (fA)π . A common alternative to the algebraic ap-
proach proposed in the above work is to characterize graphs in terms of the frequency or position of certain elementary
subgraphs embedded within them. Depending on the context these small subgraphs are usually called graphlets or
motifs. Given a graphlet g of k <n vertices whose adjacency matrix we denote with the same letter g, the indicator

µg(v1, v2, . . . , vk) =
{

1 if gi,j ≤ Avi,vj ∀ i, j,
0 otherwise,

(1)

captures whether g is a subgraph of G at position (v1, v2, . . . , vk). If we replace ≤ by = in (1), then the corresponding
indicator µind

g captures whether g is an induced subgraph at the same position.

The fundamental observation motivating the present work is that (at least for unweighted graphs), fA can be re-written
as

fA(σ) = µe(σ(n), σ(n−1)),
where e stands for the elementary graphlet of two vertices and a single directed edge. In other words, fA encodes
where the edge e occurs in G as a subgraph. It is easy to extend this idea to larger graphlets by

fA,g(σ) = µg(σ(n), σ(n−1), . . . , σ(n−k + 1)), (2)

or the same with µind
g . Crucially, fA,g will still obey the same transformation property as fA did, since if µπg is the

indicator of the permuted adjacency matrix Aπ , then

µπg (π(v1), π(v2), . . . , π(vk)) = µg(v1, v2, . . . , vk), (3)

hence
µπg (v1, . . . , vk) = µg(π−1(v1), . . . , π−1(vk)),
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and therefore
fAπ,g(σ) = µg(π−1σ(n), . . . , π−1σ(n−k+1)) = fA,g(π−1σ) = (fA,g)π(σ). (4)

This means that we can invoke the machinery of power spectra, skew spectra, etc. to derive graph invariants, but these
new invariants will be sensitive to the presence of entire subgraphs in G and not just individual edges.

An attractive feature of our approach is that given a small library g1, g2, . . . , gm of graphlets we can compute a separate
fA,gi function for each graphlet, and then form invariants from all possible combinations of these functions, capturing
information about the relative position of different types of subgraphs as well as different subgraphs of the same type.
Since in this case second order invariants already yield a rich set of features, we forgo computing higher order, more
expensive invariants, such as the skew spectrum. Our exact definition of the graphlet spectrum is as follows.

Definition 1 Given a graph G of n vertices and adjacency matrixA, relative to a collection g1, g2, . . . , gm of graphlets
and an indicator function such as (1), the graphlet spectrum of G is defined to be the sequence of matrices

q̂i,j(λ) =
(
f̂A,gi(λ)

)† · f̂A,gj (λ), j ≤ i, λ ` n, (5)
where fA,gi is defined as in (2).

Proposition 1 Each scalar component [q̂i,j(λ)]a,b of the graphlet spectrum is a graph invariant.

We assess the performance of the graphlet spectrum features on several benchmark datasets of chemical structures of
molecules. The experiments consisted of running SVMs on the data using a linear kernel on top of the the graphlet
spectrum features. For comparison, we applied a linear kernel on the reduced skew spectrum features from (Kondor &
Borgwardt, 2008) and a graphlet count kernel that counts the number of common graphlets in two graphs (Borgwardt
et al., 2007). Both these kernels had been shown to outperform the classic random walk kernel (Gärtner et al., 2003) in
earlier studies. Experiments show that on graphs of medium size (up to a few hundred vertices) the graphlet spectrum

MUTAG ENZYMES NCI1 NCI109
Number of instances/classes 188/2 600/6 4110/2 4127/2
Max. number of nodes 28 126 111 111
Graphlet spectrum 88.11 (0.46) 35.42 (0.58) 65.0 (0.09) 65.31 (0.08)
Reduced skew spectrum 88.61 (0.21) 25.83 (0.34) 62.72 (0.05) 62.62(0.03)
Graphlet count kernel 81.7 (0.67) 23.94 (0.4) 54.34 (0.04) 52.39 (0.09)

Table 1: Prediction accuracy on independent evaluation sets in percent for the graphlet spectrum features and state of
the art graph kernels on four classification benchmarks in 10 repetitions of 10-fold cross-validation. Standard errors
are indicated in parentheses. Best results for each datasets are in bold.

is compatible with state of the art graph kernels, and in several cases outperforms all other methods. Theoretical
results from non-commutative harmonic analysis and the representation theory of Sn, together with a custom-built
FFT library allow the graphlet spectrum to scale up to real-world problems with relative ease.
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