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1 Introduction and related work

Principal Component Analysis(PCA) is a widely used dimensionality reduction method in computer vision,
pattern recognition and machine learning. It is however computationally expensive when the dimension of
data is very high. Recently, several second-order PCA-style (SOPCA) dimensionality reduction algorithms
have been proposed in order to overcome the computational difficulty in applying PCA to matrices that are
conventionally viewed as vectors of high dimensionality. The main idea behind these algorithms is to avoid
converting a matrix to a high dimensional vector but use the matrix representation directly.

One of the most representative work of SOPCA is Generalized Low Rank Approximations of Matri-
ces(GLRAM) [4]. It reduces the dimensionality of a matrix by multiplying it with a left and a right projection
matrices. More specifically, we denote M = (M1,M2, . . . , Mn) as the collection of matrices for dimension-
ality reduction, where each Mi ∈ Rp×q is of size p× q. The goal is to identify two matrices L ∈ Rp×k1 and
R ∈ Rq×k2 , such that each matrix Mi can be well approximated by LAiR

> where Ai ∈ Rk1×k2 . Often in
practice, we set k1 = k2 = k, where k is the target dimensionality to be reduced to. It is casted into the
following optimization problem:

min
L,R,Ai

n∑

i=1

‖Mi − LAiR
>‖22 (1)

s. t. L>L = R>R = Ik

It is well known that (1) is a non-convex optimization problem, and usually an iterative procedure is employed
to obtain the local optimal solution. Other related works like 2-D SVD and Tensor-PCA encounter the similar
non-convex optimization problems and only local optimal solutions can be achieved.

2 A convex formulation for SOPCA

The key difficulty in identifying the left and right projection matrices L and R in GLRAM arises from their
dependency, namely, the solution of L depends on the solution of R and vice versa. To address this difficulty,
we consider first rewriting each matrix Mi into the product of two matrices Ui and Vi, and then compute the
optimal projection matrices L and R based on the eigenvectors of

∑n
i=1 UiU

>
i and

∑n
i=1 ViV

>
i . Therefore,

the key question in this framework is to decide the appropriate factorization for Mi.
In order to motivate the right formulation for matrix dimensionality reduction, we first consider the case

with a single matrix M . It is well known that the optimal projection matrices are from the singular value
decomposition of M , which is related to the definition of the trace norm or Ky Fan norm [1]:

Definition 1. The trace norm ‖M‖tr of a matrix is given by any of the three quantities:
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1. minU,V

{‖U‖F ‖V ‖F : M = UV >}

2. minU,V

{
1
2 (‖U‖2F + ‖V ‖2F ) : M = UV >}

3. The sum of the singular values of M

Furthermore, If M = UΣV > is the singular value decomposition of M , then the matrices U
√

Σ and V
√

Σ
minimize the first two quantities.

Minimizing the trace norm of M can be represented as a Semidefinite Programming (SDP) [2] problem:

min
P∈Sp×p

+ ,Q∈Sq×q
+

tr(P ) + tr(Q) (2)

s. t.
(

P M
M> Q

)
º 0

where Sn×n
+ represents positive semidefinite matrices, P and Q represent a particular factorization of matrix

M . We then extend (2) to the problem of extracting the largest k singular values of matrix M , known as
the Ky Fan k-norm [3], and further apply the idea to multiple matrices. We finally get the problem as:

min
Pi∈Sp×p

+ ,Qi∈Sq×q
+

Sk

(
n∑

i=1

Pi

)
+ Sk

(
n∑

i=1

Qi

)
(3)

s. t.
(

Pi Mi

M>
i Qi

)
º 0, i = 1, 2, . . . , n

where Sk(M) denotes the Ky Fan k-norm of matrix M . It can be shown that the optimal value of (3),
denoted by f1, and the optimal value of (1), denoted by f2, have the relationship as f2 ≤ 1

2f2
1 , which

indicates that f1 provides an upper bound for f2. This, to some degree, justifies the usage of (3) for finding
the optimal projection for matrices.

Solving the optimization problem in (3) is difficult due to function Sk(M), however, it can be converted
to an equivalent SDP formulation:

max
Tp∈Sp×p

+ TQ∈Sq×q
+ Zi∈Rp×q

n∑

i=1

tr(Z>i Mi) (4)

s. t.
(

TP Zi

Z>i TQ

)
º 0, i = 1, 2, . . . , n

TP ¹ I, TQ ¹ I, tr(TP ) ≤ k, tr(TQ) ≤ k

The problem (4) is convex, thus the global optimal solution can be achieved. Directly solving (4) for
large-size data sets, however, could be computational expensive. We have constructed an alternative al-
gorithm which obtains an approximate solution to (4). Our preliminary experiments on the task of face
image classification show encouraging results of the proposed algorithm in comparison to the state-of-the-art
algorithms for SOPCA.
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