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Conditional independence is an important concept in many different aspects of engineering such as
detecting causal relationship between two time series and extracting informative features in a classification
or regression setting [2, 3, 5]. Besides several other measures, conditional mutual information (CMI) has
been suggested as a measure of conditional dependence [4]. Inspired by the use of kernel based methods as a
function approximator, we propose a new approach to estimate CMI. We briefly describe the proposed work
below.

Given random variables (X, Y, Z), CMI between X and Y given Z is defined as

I(X ; Y |Z) = EZ [I(X ; Y )|Z] =
∫

fZ(z)
[∫∫

fXY |Z(x, y|z) log
fXY |Z(x, y|z)

fX|Z(x|z)fY |Z(y|z)
dxdy

]
dz. (1)

It can be easily seen that conditional mutual information can be expressed in the following form,

I(X ; Y |Z) = EXY Z

[
log

(
fXY Z(X, Y, X)

fX(X)fY (Y )fZ(Z)
fX(X)fZ(Z)
fXZ(X, Z)

fY (Y )fZ(Z)
fY Z(Y, Z)

)]
.

Let us define
h(x, y, z) =

fXY Z(x, y, z)
fX(x)fY (y)fZ(z)

.

Then
fXY Z(x, y, z) = h(x, y, z)fX(x)fY (y)fZ(z).

Integrating both sides with respect to x we get,

fY Z(y, z) = fY (y)fZ(z)EX [h(X, y, z)] ⇒ fY Z(y, z)
fY (y)fZ(z)

= EX [h(X, y, z)].

Similarly,
fXZ(x, z)

fX(x)fZ(z)
= EY [h(x, Y, z)].

Thus,

I(X ; Y |Z) = EXY Z [log h(X, Y, Z)− log EX′ [h(X ′, Y, Z)] − log EY ′ [h(X, Y ′, Z)]] (2)

where X ′ and Y ′ are independent copies of X and Y respectively. Therefore, an estimator of h(x, y, z)
directly leads to an estimator of CMI.

Inspired by the kernel based methods, we replace h by ĥ(x, y, z) =
∑n

i=1 αiκ1(x, xi)κ2(y, yi)κ3(z, zi)
where κ1, κ2 and κ3 are positive definite kernels and minimize the following cost function solve for the
coefficients,

J =
∫ (

fXY Z(x, y, z)
fX(x)fY (y)fZ(z)

− ĥ(x, y, z)
)2

fX(x)fY (y)fZ(z)dxdydz + λ||α||22
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Fig. 1: Surrogate data test of causality.

where α is a vector containing the coefficients αi’s. Expanding the first term in the cost function it can be
shown that

1. the actual density functions only appears as expectations i.e. we do not need to know them explicitly
and,

2. the cost function is quadratic in terms of α and therefore, can be easily solved.

Replacing ĥ in eq. (2), we get an estimator of CMI. Next, we briefly describe an experiment of detecting
causality.

Consider two time series {Xt} and {Yt} as follows,

x(t) = 3.4x(t − 1)(1 − x2(t − 1))e−x2(t−1) + 0.8x(t − 2) + ε1

y(t) = 3.4y(t− 1)(1 − y2(t − 1))e−y2(t−1) + 0.5y(t− 2) + cx2(t − 2) + ε2

where ε1, ε2 ∼ N (0, 1). Similar experiment without the noise term has been described in [1]. In this
particular case {Xt} causes {Yt} but not the other way around. Therefore, Xt ⊥ [Yt−1, Yt−2]|[Xt−1, Xt−2]
but Yt �⊥ [Xt−1, Xt−2]|[Yt−1, Yt−2]. Figure 1 shows the surrogate data test with 100 samples. It can be
clearly seen that the test supports our expectations.
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