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Time-dependent processes are often mathematically modeled as systems of differen-
tial or difference equations. When the knowledge about the process is partial, conflicting
hypotheses are represented as alternative models, which are selected according to obser-
vational evidence [1]. Designing maximally informative experiments is desirable, but it
is also challenging for nonlinear and partially observable systems [2]. Whereas the stan-
dard approaches are based on the linear-Gaussian assumption, in this work we propose a
strategy based on the extraction of a measurement information core, for the purpose of
active model selection. The core consists of a subset of state variables of the dynamical
system Σ, whose property of high informativeness is invariant under a range of initial
conditions and parameters. The information core is identified according to the expected
“surprise” experienced by the observer from the result of the designed measurement [3].

In a n-dimensional state space, let the process model be described by the possibly
stochastic differential equation

dx(t) = f(x(t), θ, t)dt+ σw(x(t))dW (t),

where W (t) is a Wiener process, whose infinitesimal variance is σw. In this formulation,
the deterministic component f and its parameters θ are unknown. A set of alternative
models {Mi}qi=1 is hypothesized, each one associated with its respective deterministic
function fi, whose parameters are uncertain. The time-discrete measurement process can
be formalized as y(ti) = Hx(ti) + vi, where y is an m-dimensional measurement vector,
H ∈ {0, 1}m×n is the Boolean measurement matrix and vi are random variables that
describe the measurement noise.

The goal of optimal experimental design is the specification of H which maximizes
the information gain, subject to an upper bound on the dimension of the observation
vector and to additional feasibility constraints. The information gain is quantified by
the expected dissimilarity between the prior and the posterior, that is by the mutual
information between the models and the data

I(M,D(H)) = ED [KL(p(M|D(H))||p(M))] ,

where D(H) denotes the dataset measured according to the selected H. The initial con-
ditions are unknown, the parameters are uncertain and, moreover, their marginalization



is computationally infeasible. Therefore, the identification of the maximally informa-
tive subset of variables must be robust against perturbations of the system configuration
C = (x(t0), θ).

The maximum amount of information is obtained when the complete state space is
measurable, that is when H is a permutation matrix. This defines an upper bound on the
experimentally available information, given by Imax = I(M,D(In)). For a given α ∈ [0, 1],
we denote the solution of the optimal experimental design as

H∗α(C) = arg min
H∈Sα(C)

∑
i,j

Hi,j ,

where
Sα(C) = {H|IC(M|D(H)) ≥ αImax

C }.

The function m(H) defines the subset of state variables xi that are measured when the
experiment specified by H is performed. Finally, the measurement information core of Σ
is obtained as

core(Σ) =
⋂
C∈C

m(H∗α(C)),

for a set of system configurations C.
This research builds on the observation that, despite nonlinearity and uncertain system

condition, very few variables are necessary to discriminate between conflicting hypotheses.
In the case of the 19 proposed models and parameters of the biochemical TOR pathway [4],
we computed that approximately half of the experimentally available information comes
from a subset of variables whose cardinality is one order of magnitude smaller than the
dimension of the state space.

The extraction of the measurement information core facilitates the identification of key
mechanisms in the studied system, which are the ones playing a central role in the model
selection. We expect our strategy to highlight specific dynamical behaviors, providing a
persistent source of information for the design of critical experiments.
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