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A problem posed by Freund is how to efficiently track a small pool of experts out of a much larger set. This problem
was solved when Bousquet and Warmuth introduced their mixing past posteriors (MPP) algorithm in 2001.

In Freund’s problem the experts would normally be considered black boxes. However, in this paper we re-examine
Freund’s problem in case the experts have internal structure that enables them to learn. In this case the problem has
two possible interpretations: should the experts learn from all data or only from the subsequence on which they are
being tracked? The MPP algorithm solves the first case. We generalise MPP to address the second option. Our results
apply to any expert structure that can be formalised using (expert) hidden Markov models. Curiously enough, for our
interpretation there aretwo natural reference schemes: freezing and sleeping. For each scheme, we provide an efficient
prediction strategy and prove the relevant loss bound.

Introduction Freund’s problem arises in the context of prediction with expert advice [2]. In this setting a sequence
of outcomesx1:T = x1, . . . , xT needs to be predicted, one outcome at a time. Thus, prediction proceeds in rounds: in
each roundt we first consult a set of experts, who give us their predictions. Then we make our own predictionpt and
incur some lossℓ(pt, xt) based on the discrepancy between this prediction and the actual outcome. In this abstract
predictions are probability distributions on a single outcome, and we restrict attention to the log lossℓ(pt, xt) =
− log pt(xt). In the full paper we show how to turn any prediction strategyfor log loss that satisfies certain weak
requirements, into a strategy for arbitrary mixable loss.

The goal is to minimise the difference between our cumulative loss and some reference scheme. For this reference
there are several options; we may, for example, compare ourselves to the cumulative loss of the best expert in hindsight.
A more ambitious reference scheme was proposed by Yoav Freund in 2000.

Freund’s Problem Freund asked for an efficient prediction strategy that suffers low additional loss compared to the
following reference scheme:

(a) Partition the data into several subsequences.
(b) Select an expert for each subsequence.
(c) Sum the loss of the selected experts on their subsequences.

In 2001, Freund’s problem was solved by Bousquet and Warmuth, who developed the efficient mixing past posteriors
(MPP) algorithm [1]. To state its loss bound, we need the following notation. If members of a familyC are pairwise
disjoint and together cover{1, . . . , T}, then we callC a partition. For any cellC = {i1, . . . , ik} ∈ C we writexC for
the subsequencexi1

, . . . , xik
.

Theorem 1 (Bousquet and Warmuth 2002, Theorem 7). For any mixing scheme β, data x1:T , expert predictions and
partition C

ℓ(MPP, x1:T ) ≤
∑

C∈C

ℓ(BAYES, xC) − lnβ(C).

For each cellC, ℓ(BAYES, xC) denotes the loss of the Bayesian mixture of experts on the subsequencexC in isolation,
which is close to the loss of the best expert for that subsequence. The additional overhead− ln β(C) is related to the
number of bits required to encode the reference partitionC. Multiple mixing schemes are possible. For an extensive
discussion see [1]. This seems to settle Freund’s problem, but does it really?



The Loss of an Expert on a Subsequence In our view Freund’s problem has two possible interpretations, which
differ most clearly for learning experts. Namely, to measure the predictive performance of an expert on a subsequence,
do we show her the dataoutside her subsequence or not? An expert that sees all outcomes willtrack theglobal
properties of the data. This is (implicitly) the case for mixing past posteriors. But an expert that only observes the
subsequence that she has to predict might see and thus exploit its local structure, resulting in decreased loss. The more
the characteristics of the subsequences differ, the greater the gain. Let us illustrate this by an example.

The data consist of a block of ones, followed by
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Figure 1: Estimated probability of a one

a block of zeros, again followed by a block of ones.
In Figure 1 we compare two partitions. Either we put all
data into a single cell, or we split the data into the sub-
sequence of ones and the subsequence of zeroes. Our
expert predicts the probability of a one using Laplace’s
rule of succession, i.e. shelearns the frequency of ones
in the data that she observes [2]. Note that one learning
expert suffices, as we can select (a separate copy of) her for two subsequences.

When learning on all data, the subsequences interfere with each other and the expert’s predictions on block two
and three track the global frequency. If the subsequences are separated, the expert’s predictions converge quickly to
the local frequencies (one and zero). This shows that the predictive performance of a learning expert on a subsequence
in isolation can be dramatically higher than that on the samesequence in the context of all data. This behaviour is
typical: on all data a learning expert will learn the average, global pattern, while on a well-chosen subsequence she
can zoom in on local structure.

Sleeping or Freezing We solve Freund’s problem under the interpretation that experts only observe the subsequence
on which they are evaluated. This requires knowledge about the experts’ internal structure. We therefore represent a
learning expert as anexpert hidden Markov model (EHMM), which is an HMM in which the production probabilities
are determined by the advice of simpler experts. Many adaptive prediction strategies (i.e. learning experts) from the
literature can be represented as efficient EHMMs [3].

There are two ways to evaluate the performance of a learning expertH on a subsequencexC in isolation: freezing
(Hfr

C
) andsleeping (Hsl

C
). To illustrate the difference, imagine a sequencex1:T of images shown on a television screen.

Suppose we askH to predict the subsequencexC of images belonging to our favourite show. We want tofreeze H

during commercial breaks:Hfr
C

simply ignores them and continues predicting the show whereit left off. We want to
putH to sleep when we zap to another channel:Hsl

C
knows the time and, after we zap back, predicts the show as it has

advanced.

EPP We introduce an efficient prediction strategy, calledevolving past posteriors, that generalises MPP. Its two
variants EPPfr and EPPsl achieve small additional loss compared to Freund’s scheme for freezing and sleeping:

Theorem 2. Let f/s denote either fr or sl. For any learning expert H in EHMM form, mixing scheme β, data x1:T ,
expert predictions and partition C

ℓ(EPPf/s, x1:T ) ≤
∑

C∈C

ℓ(Hf/s
C , xC) − lnβ(C).
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