
Monte-Carlo Simulation Balancing

David Silver1 and Gerald Tesauro2

1 Dept. of Computing Science, Univ. of Alberta, Edmonton, Alberta
2 IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532 USA

Monte-Carlo search has dramatically outperformed traditional search methods in

two-player games such as Go, Backgammon and Scrabble. The performance of Monte-

Carlo search is primarily determined by the quality of the simulation policy. However,

strong simulation policies, constructed by hand, supervised learning, or reinforcement

learning, do not typically produce the diverse, well-balanced simulations that are de-

sirable for a Monte-Carlo player. Instead, we introduce a new paradigm for learning a

simulation policy that explicitly optimizes a Monte-Carlo objective.

We consider training a softmax simulation policy πθ(s,a) with parameter vector

θ, to perform Monte-Carlo simulations in deterministic two-player games. Rather than

making πθ itself as strong as possible, our goal is to maximize the strength of a Monte-

Carlo player using πθ. Intuitively, this should be achieved when the Monte-Carlo sim-

ulations are as accurate as possible, i.e., the mean outcome of Monte-Carlo trials from

a given position s should match the game-theoretic value V ∗(s) or some suitable proxy

(e.g., the mean outcome in expert vs. expert play).

We formalize the above intuition by introducing the concept of balance as follows.

The policy’s decision at each time step t incurs some error δt =V ∗(st+1)−V ∗(st), with δ

alternating in sign for the two players. The k-step balance Bk of policy πθ is the policy’s

expected squared sum of errors δt over k adjacent time steps. From the definition of δt

we may write:
Bk(θ) = Eρ[(Eπθ

[V ∗(st+k)−V ∗(st)|st = s])2] (1)

where Eρ denotes expectation over the distribution of states ρ(s).
Here we consider two choices of k. The two-step balance B2(θ) allows errors by

one player, as long as they are on average balanced out by the other player’s error

on the next move. The full balance B∞ allows errors to be committed at any time, as

long as they balance out by the time the game is finished. It corresponds exactly to

the objective of optimizing the accuracy of Monte-Carlo expected outcomes: B∞(θ) =
Eρ[(Eπθ

[V ∗(sT)−V ∗(st)|st = s])2] = Eρ[(Eπθ
[z|st = s]−V ∗(s))2], where sT is the ter-

minal state with outcome z.

We propose algorithms to optimize B2 and B∞ by gradient descent which we respec-

tively call two-step simulation balancing and policy gradient simulation balancing. In

both cases the gradient expression involves a product of a bias term b(s) times a pol-

icy gradient term g(s). In two-step simulation balancing these terms can be calculated

analytically, while in policy gradient simulation balancing, they can be estimated by

(independent) stochastic sampling.

We compare our balancing algorithms with two alternatives based on optimizing

policy strength. One alternative, apprenticeship learning, is trained on a database of

expert moves. It minimizes the expected KL-divergence between the simulation policy

π(s,a) and the observed expert policy, µ̂(s,a), by gradient descent. The other alternative

uses policy gradient RL, specifically a form of Williams’ REINFORCE algorithm [1].

The above algorithms were applied in 5×5 and 6×6 Go. The apprenticeship learn-

ing and simulation balancing algorithms made use of a data-set of positions from 1000

games of randomly played 5×5 and 6×6 Go games. We used the open source Monte-

Carlo Go program Fuego to evaluate each position, using a deep search of 10k simula-

tions from each position. The results of the search are used to approximate the optimal

value V̂ ∗(s) ≈V ∗(s). For the two step simulation balancing algorithm, a complete tree

of depth 2 was also constructed from each position, and each leaf position evaluated

by a further 2k simulations. These leaf evaluations approximate the optimal value after

each possible move and response.

The softmax policies used 107 weights for each unique 1 × 1 and 2 × 2 pattern

of stones, given rotational, reflectional and colour inversion symmetries. We trained

the simulation policy using 100k training games, starting with initial weights of zero.

All four algorithms converged to stable solutions, and significantly reduced the Monte-

Carlo evaluation error compared to the uniform random policy. The simulation bal-

ancing algorithms achieved less than half the MSE of the uniform random policy, and

10-30% lower error than apprenticeship learning or policy gradient RL (Figure 1a).

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0 20000 40000 60000 80000 100000

M
S
E

Training games

Uniform Random
Apprenticeship Learning

Policy Gradient Reinforcement Learning
Policy Gradient Simulation Balancing

Two Step Simulation Balancing

5x5 6x6
Simulation Policy Direct MC Direct MC
Uniform random 0 1031 0 970
Apprenticeship learning 671 1107 569 1047
Policy gradient RL (20k) 816 1234 531 1104
Policy gradient RL (100k) 947 1159 850 1023
Policy gradient sim. balancing 719 1367 658 1301

Two step simulation balancing 720 1357 444 1109
GnuGo 3.7.10 (level 10) 1376 N/A 1534 N/A

Fig. 1. a) Mean-squared error for Monte-Carlo evaluation of 5× 5 Go positions during training,

b) Elo rating of fully trained simulation policies in 5×5 Go and 6×6 Go tournaments.

Finally, we ran a tournament between players based on each simulation policy:

firstly selecting moves directly according to the simulation policy; and secondly us-

ing the simulation policy in a Monte-Carlo search algorithm. Our search algorithm was

intentionally simplistic: for every legal move a, we simulated 100 games starting with

a, and selected the move with the greatest number of wins. We included two simulation

policies that were trained by policy gradient RL, which maximized strength and mini-

mized MSE respectively, after 100k and 20k games of training respectively. The results

of the tournament are shown in Figure 1b, and compared to GnuGo, a deterministic Go

program with sophisticated, handcrafted knowledge and specialized search algorithms.

When the simulation policies are used directly, policy gradient RL (100k) is by far

the strongest, 200 Elo points stronger than simulation balancing. However, when used

as a Monte-Carlo policy, simulation balancing is much stronger, 200 Elo points above

policy gradient RL (100k), and almost 300 Elo stronger than apprenticeship learning.

Two-step simulation balancing performed almost as well as Monte-Carlo simulation

balancing in 5×5 Go, but appeared to get stuck in poor local optima in 6×6 Go.

[1] Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine Learning 8 (1992) 229–256

Topic: Control (reinforcement learning)

Preference: oral

