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1 Introduction

Recommender systems provide users with personalized
suggestions for products or services, which have been
widely adopted by electronic commerce sites, such as
those of Amazon, Netflix, Google and Yahoo. Most
recommender systems are built based on a technique
called collaborative filtering (CF) which only makes
use of the users’ past activities such as their transac-
tion history or product satisfaction expressed in rat-
ings, but not the explicit user profiles, to predict the
users’ future activities.

Probabilistic matrix factorization (PMF) [3] has been
shown to achieve state-of-the-art performance for CF.
PMF is based on the Gaussian (normal) assumption
that both the prior and the likelihood term are as-
sumed to follow normal distributions. However, in real
CF applications, it is common to find that some users
may deliberately add some rating patterns deviating
from the majority just for fun or for some malicious
goals. Hence, the rating information from these users
might be noninformative or ever harmful for the whole
system. These users can be treated as noise (outliers).
Furthermore, even for normal users, some of their rat-
ings might not reflect their real preferences due to some
unexpected factors. Therefore, noise is inevitable for
a real CF system and hence the normal assumption in
PMF might not be robust enough for modeling.

The t distribution has been widely used in many ap-
plications for modeling cases with noise. In this paper,
by adopting the t distribution for both the prior and
the likelihood term, a robust probabilistic matrix fac-
torization (RPMF) method is proposed for CF. Fur-
thermore, an expectation-maximization (EM) algo-
rithm [1] is derived to learn the parameters of RPMF.
From the EM algorithm, it is easy to see that RPMF
is robust against outliers by automatically penalizing
the contribution of outliers. Although the nice prop-
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erty of robustness is theoretically guaranteed, we ex-
pect to have extensive experimental results, in terms
of outlier detection, accuracy and time complexity, to
report at the workshop.

2 Robust Probabilistic Matrix
Factorization

In a typical CF task, we often use a sparse N × M
matrix R to represent the rating or preference values
on M items given by N users, where each matrix el-
ement Rij denotes the preference on item j given by
user i. The matrix R is sparse because many elements
are missing, and each such element Rij is assigned the
value of 0 to indicate that item j has not been rated
by user i. The goal of CF is to learn a (real-valued)
function to predict (some of) the missing elements in
R based on the observed elements. Let U ∈ RD×N

denote the latent user feature matrix and V ∈ RD×M

denote the latent item feature matrix, with column
vectors U∗i and V∗j denoting the user-specific and
item-specific latent feature vectors, respectively. The
indicator variable Zij is equal to 1 if user i has rated
item j and is 0 otherwise. We use Ri∗ to denote the
actual rating vector by excluding the missing elements,
ni to denote the number of ratings made by user i, i.e.,
the length of Ri∗, and V(i) to denote the columns of
V corresponding to Ri∗. For example, if user i has
only rated items {1, 3, 9}, then Ri∗ = (Ri1, Ri3, Ri9),
ni = 3 and V(i) = [V∗1,V∗3,V∗9].

2.1 Model Formulation

Given U and V, the likelihood of the observations is
defined as follows:

p(R |U,V) =
N∏

i=1

p(RT
i∗ |U∗i,V)

=
N∏

i=1

tν(RT
i∗ |V(i)T

U∗i, λI), (1)



where tν(· |µ,Σ) denotes the t distribution with mean
µ and covariance matrix Σ, ν > 0 is the degree of
freedom, λ is a parameter, and I is the identity matrix.

Furthermore, we put a t prior on each U∗i and assume
that all {U∗i} are independent:

p(U) =
N∏

i=1

p(U∗i) =
N∏

i=1

tν(U∗i |0, I). (2)

Remark 1 Unlike PMF, we treat V as parameters
rather than missing variables here. We may also put a
prior (e.g., Gaussian prior or t prior) on V and apply
a variational method [2] to learn U and V. This pos-
sibility is not considered in this paper though but will
be pursued in our future work.

According to the properties of the t distribution, we
can rewrite (1) and (2) as follows:

p(wi) = G(wi |
ν

2
,
ν

2
),

p(U∗i |wi) = N (U∗i |0,
1
wi

I), (3)

p(RT
i∗ |wi,U∗i) = N (RT

i∗ |V(i)T
U∗i,

λ

wi
I), (4)

where G(·) denotes the Gamma distribution, and
N (· |µ,Σ) denotes the normal distribution with mean
µ and covariance matrix Σ.

2.2 Learning

We adopt the EM algorithm to learn U and V.
During the learning process, we treat θ = (V, λ)
as parameters and (U,w) as missing data where
w = (w1, w2, . . . , wN ). The EM algorithm operates
by alternating between the E-step and M-step. In
the E-step, the expectation of the complete-data log-
likelihood is computed, and in the M-step, the param-
eters θ = (V, λ) are updated to maximize the expec-
tation of the complete-data log-likelihood. Because all
the {U∗i} or {V∗j} are decoupled during the EM pro-
cedure, we can update one column of U or V at a time.
The EM algorithm is summarized in Algorithm 1.

Compared with PMF, some interesting insights can be
observed from Algorithm 1:

• w̄i can be seen as a weight put on user i. All
{K(i)} are computed based on the same values
λ and V, which can be seen as the shared co-
variance information for the ratings of all users.1

The weight w̄i will get smaller if Ri∗K(i)−1
RT

i∗ is

1Although the {K(i)} of different users may be different,

the component V∗j used to compute K(i) and K(k) is the
same as long as both user i and user k rate item j.

Algorithm 1 EM algorithm for parameter learning in
RPMF.

E-step:

K(i) = λI + V(i)T
V(i),

H(i) =
(
I +

1
λ
V(i)V(i)T

)−1

,

w̄i =
ni + ν

Ri∗K(i)−1RT
i∗ + ν

, (5)

Ū∗i =
1
λ
H(i)V(i)RT

i∗, (6)

〈wiUT
∗i〉 = w̄iŪT

∗i,

〈wiU∗iUT
∗i〉 = H(i) + w̄iŪ∗iŪT

∗i.

M-step:

V∗j =

(
N∑

i=1

Zij〈wiU∗iUT
∗i〉

)−1

·

(
N∑

i=1

ZijRij〈wiUT
∗i〉

)T

, (7)

λ =
1∑N

i=1 ni

N∑
i=1

[
w̄iRi∗RT

i∗ − 2〈wiUT
∗i〉V(i)RT

i∗

+tr
(
V(i)V(i)T

〈wiU∗iUT
∗i〉
)]

.

larger, which means that the ratings of user i can
only be poorly explained by the shared informa-
tion λ and V. Subsequently, the outlier users will
be automatically penalized.

• ν serves as a smoothing term for updating wi. The
larger the ν, the smaller the penalties will be put
on the outlier users. If ν → +∞, we can recover
PMF by some simple transformation.

• The main difference between RPMF and PMF for
updating V lies in the weights {w̄i} for different
users. If some users are outliers, their contribu-
tion to the update of V will be automatically re-
duced.
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