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1 Introduction

Clustering of subsequences of time series is a widely studied and applied class
of techniques [3, 4, 2, 6, 1, 5, 7] which aims at interpreting a time series as
a shorter sequence of symbols, each of which represent a segment of the series
with a pattern that is similar to other segments that has been assigned the same
symbol.

The research field of subsequence clustering, which was already a widely ap-
plied and studied technique, took a dramatic turn after Keogh, Lin and Truppel
[4] published a paper which claimed that clustering subsequences using sliding
window approaches is meaningless. They had discovered that techniques such
as the standard k-means clustering of the segments of a time series created by a
sliding window of a fixed size are often looking the same regardless of the input
data. When using a fixed size sliding window one will often create segments
that are in different phases with respect to the pattern in the data which makes
it difficult to learn meaningful patterns.

Here we extend the objective function of k-means clustering from fixed win-
dow segments to segmentations of varying length. In this new clustering frame-
work there is no need for using overlapping windows. Semi-markov clustering
does not cluster a fixed set of segments, but works with all possible segmen-
tations to find one way of segmenting the sequence into consistent patterns.
Unlike in the fixed window setting, the result is a segmentation into consistent
patterns and centroids that look exactly like those patterns. We report results
on several dataset including the artificial Cylinder-Bell-Funnel set, ECG and
accelerometer traces from body worn sensors.
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2 Semi-Markov k-Means

We assume that we are given sequences of observations x, i.e. a multi-dimensional
time series, and that there exist an unknown associated sequence of labels y
which are jointly drawn from some distribution Pr(x, y). To keep the notation
simple (we will need to index the positions within the sequence and we would
like to avoid double indexing) assume that we only have a single sequence x.
Extensions to multiple sequences are straightforward. We express y in a com-
pressed representation as a list of pairs y = (n0, l0), . . . , (nm, lm) of segment
boundaries ni and associated labels li. Note that the number of segments m
itself is variable.

We define a feature vector φ(x, ni−1, ni) for every segment. The feature
vector’s dimension does not depend on the length of the segment.

In our semi-Markov k-means clustering algorithm, we find a labeled segmen-
tation y of a given data sequence x by performing the following minimization:

y := arg min
y
F (x, y;µ) (1)

where we would ideally like to use

F̃ (x, y;µ) :=
1
m

m∑
i=1

‖φ(x, ni, ni−1)− µ(li)‖2 (2)

which is the average square distance of the feature vector for the segments from
y = (n0, l0), . . . , (nm, lm) to their class centroids µ(li). This ideal formulation
(2) is, however, ill suited for dynamic programming which is necessary to per-
form the minimization in (1). Instead we take advantage of the fact that if all
segments have the same length η and the total length of the sequence is M then
1
m = η

M and we can move η into the summation, resulting in the objective that
we do use, namely

F (x, y;µ) :=
m∑
i=1

‖φ(x, ni, ni−1)− µ(li)‖2ηi (3)

where ηi = ni − ni−1, i.e. the segment length of the i:th segment, and we have
removed the irrelevant factor 1

M . If all ηi are equal this formulation is equivalent
to the ideal (2) and therefore using (3) is also a generalization of the objective
function used for sliding window k-means to all possible segmentations. Note
that if we did not use either an average distance or the factors ηi then we would
have a bias towards having as few and long segments as possible since that
would yield fewer terms in the sum.

Given an initialization of the centroids µ(li) we perform an iterative opti-
mization procedure that is an easy extension of the standard k-means procedure
which interchangable performs a labeled segmentation based on given centroids
and calculates new centroids based on an existing labeled segmentation through
simply averaging the segments assigned to each class.
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