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Tomáš Šingliar
Boeing Research and Technology

Bellevue, WA
tomas.singliar@boeing.com
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Abstract

We consider the problem of vehicle routing in the
fully general setting of a transportation network
with stochastic, time-dependent travel times. To
forecast future system state, we adapt a traffic flow
model to provide probabilistic predictions. This be-
comes a generative model for the Markov decision
process formalizing the planning problem. We pro-
pose an efficient planning algorithm to take advan-
tage of such a predictive asset. The evaluation on
actual traffic flow data shows that the largest im-
provement is to be had from forecasting the traf-
fic flow better, followed by a smaller improvement
from the new planning algorithm.

1 Introduction
Ideally, expected shortest time planning would be based on
the exact time cost of future actions. However, travel time
(action cost) in transportation networks varies with the traffic
conditions and is not completely predictable. As the driver
executes a plan, changing conditions and/or improved traffic
prediction may change the optimal course of action. Algo-
rithmically, we thus have two interlocking challenges: a pre-
diction task, and a planning problem.

A fully general Markov decision process (MDP) formu-
lation is not tractable with a prohibitively large state space
encompassing the traffic state. A simple observation that one
driver’s actions have no measurable effect on traffic flow is
a powerful approximate assumption. In such a case, the two
separate tasks decouple into predicting traffic, and planning
efficiently with such prediction.

Civil engineers have several theories of traffic flow [Schad-
schneider et al., 2005]. We modify a cell transmission model
to serve as a generative model for the (Semi-)MDP formal-
izing the planning task. Advantages of our dynamic model
include that unlike most flow models, it is natural to parame-
terize – learn from observed data; and that its parameters have
a clear interpretation. Because of the complex non-linear in-
teractions involved, we implement a particle filter for approx-
imating the predictive distributions of traffic quantities.

We propose a planning algorithm (the k-robust planner)
that works by sampling several traffic state trajectories. Then

it finds the shortest path for each of these trajectories and fi-
nally selects the best candidate according to a prior decision
criterion.

2 The model
We represent the state of traffic flow vectors of state variables
defining the flow speed v, volume y and demand q (number
of vehicles present). The components of the vectors corre-
spond to road segments. The dynamics reflect the interactions
among traffic variables over time and space. The joint distri-
bution of traffic quantities is assumed to factorize along the
segments at each time. The “entanglement” by temporal in-
teraction is sufficient to model the spatial dependencies. For
this to hold, the model time step δt needs to be sufficiently
fine.

Interactions occur mostly between demands and volumes,
while speeds vt

i are thought of as a “dependent variable”.
Hence the one-step conditional distribution decomposes to:

p(st+δt|s) =
N∏

i=1

p(qt+δt
i |st)p(yt+δt

i |st)p(vt+δt
i |yt+δt

i ) (1)

The hidden state (demand q) and observed (volume v) dy-
namics is derived from the law of flow conservation. The
distribution of the demand on a segment depends on the pre-
vious state and the volume shifting to and from neighboring
segments. The inflow/outflow volume to/from a segment is
an unobserved quantity (due to lack of instrumentation on en-
try/exit ramps) and is the major source of uncertainty in the
model.

The third term of the traffic model in Equation 1, p(vi|yi),
captures how speed on a particular segment of the road de-
pends on its traffic volume. In our data, this relationship
varies widely depending on physical properties of the road
infrastructure. To model this, we estimate the joint p(vi, yi),
separately for each segment i, from historical data by a ker-
nel estimate. A small Gaussian kernel is centered on each
data point (v(n)

i , y
(n)
i ), with axis-aligned covariance equal to

the empirically observed variance in the respective covariates.
Figure 1 shows an example of the volume-speed diagram im-
plemented in the model.

Inference. Let us denote the time of last observation by T .
Our prediction goal corresponds to the probabilistic query

p(vT+1:H ,yT+1:H |v1:T ,y1:T ) (2)



Figure 1: A fundamental diagram and the resulting condi-
tional distributions (thick lines) for two flow volume values.

We need to track the hidden state q until time T (with v and
y observed) and predict from there on, with v and y unob-
served. An approximate Monte Carlo scheme [Doucet et al.,
2001] needs to be used due to the arbitrary form of input dis-
tributions and non-linear interactions (Figure 1).

3 Planning algorithm
The proposed algorithm is inspired by the particle filtering
and somewhat reminiscent of Pegasus [Ng and Jordan, 2000].
First, we sample from the dynamic model k traffic state tra-
jectories T (1), . . . , T (k). A trajectory is a mapping from
T : Time → S, where S is the space state of traffic variables
s = (q,y,v). In practice, we use a finely-grained piecewise
linear approximation. Each state trajectory T (i) begins in the
start state s0 which coincides with the time of plan execution:
T (i)(t0) = s0. The trajectory T (i) now represents a fixed
deterministic evolution of the system; thus, the link traversal
times are now fixed and we can plan “optimally” using plain
A∗, obtaining a plan (path) p(i).

Thus we have k paths p(1), . . . , p(k), each of them opti-
mal under a possible future evolution of the system. To pick
one as the result of planning, we evaluate how well each per-
forms on the remaining trajectories; e.g. evaluate p(1) against
T (2), . . . , T (k), thus obtaining k − 1 samples from the distri-
bution of p(1)’s cost. The path with the best mean travel time
(taken over the k − 1 remaining trajectories) is selected as
the result. Any other selection criterion may be used as well.
We call this algorithm k-robust planning. Clearly, the com-
plexity of this algorithm will be dominated by running the k
instances of plain A∗.

4 Experimental evaluation
The data comes from Pittsburgh metro area, which has ap-
proximately 150 sensor locations that collect the volume
(number of vehicles) and the average speed of travel in 5-
minute intervals. The underlying topology and speed limits
are provided by the ArcGIS geographic information system
and the StreetMap database.

There are often very few sensible alternatives for travel be-
tween two points in a city1. Even when one encounters an ad-
verse traffic situation, it rarely justifies changing one’s route.
Therefore, for our comparison we manually selected origin-
destination pairs where at least two routes very close in ex-
pected travel time exist.

Four combinations of planning methods and prediction
models are executed:

1. the baseline A∗ with speeds determined by historical av-
erage for the space and time of day

2. A∗ that takes for its cost the mean of the model predic-
tive distribution

3. the k-robust method for two different values of k

4. Upper bound is established by a clairvoyant method that
always picks the optimal path

The results show that in all cases, using the dynamic model
to predict traffic state and planning with that prediction yields
significantly shorter travel times (as much as 5 minutes on
a half-hour trip) than the baseline approach, which uses ob-
served historical average speed to determine travel time.

The proposed k-robust algorithm (for k = 5) also results
in an improvement, albeit about 7 times smaller than the one
realized by using the model’s prediction. A further small im-
provement (half again) is observed for k = 20. This suggests
that inter-temporal correlations of travel cost indeed play a
role, even though a weaker one compared to the importance
of predicting the evolution of traffic better on average. The
best method closes about 75% of the gap between the base-
line and the unachievable clairvoyant solution.

5 Conclusions
We have shown that vehicular traffic prediction can be suc-
cessfully exploited in order to plan faster routes, giving a
model and a planning algorithm to use it. There is of course
a catch for practical applications: we have assumed that the
driver’s actions do not influence the evolution of traffic. The
predictions are no longer valid if a non-negligible fraction of
the traffic network users execute plans based on such predic-
tions. This is a much more complex topic we deliberately
avoided in this paper.
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1Here we are limited to roads major enough to have sensor in-
strumentation and thus data for learning and evaluation.


