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1 Abstract

Building intelligent systems that are capable of extragtiigh-level representations from high-dimensional
sensory data lies at the core of solving many Al related taskkiding object recognition, speech perception,
and language understanding. Theoretical and biologigalnaents strongly suggest that building such systems
requires deep architectures that involve many layers offmesr processing. Hinton et.al. [2] introduced a fast,
greedy learning algorithm for Deep Belief Networks that Vddearn one layer of features at a time. This new
learning algorithm has generated substantial interestad@mia and many variants of it have been successfully
applied in many application domains. However, a cruciahdvantage of these deep probabilistic models is
that the approximate inference is very limited, becausepeirformed in a single bottom-up pass, and will fail
to adequately account for uncertainty when interpretingigoous sensory inputs.

In this work, we present a new learning algorithms for a défe type of hierarchical probabilistic model: a
deep Boltzmann machine (DBM). Unlike deep belief netwoekBBM is a type of Markov random field, or
undirected graphical model, where all connections betvegsrs are undirected. Deep Boltzmann machines
are interesting for several reasons. First, like deep tradivorks, DBM'’s have the potential of learning inter-
nal representations that become increasingly complexghwiki considered to be a promising way of solving
object and speech recognition problems. High-level repradions can be built from a large supply of unla-
beled sensory inputs and the very limited labeled data camlike used to only slightly fine-tune the model for
a specific task at hand. Second, unlike existing models ve#pdrchitectures, the approximate inference pro-
cedure, in addition to bottom-up pass, can incorporatedtopn feedback, allowing deep Boltzmann machines
to propagate uncertainty better, and to deal more robustly ambiguous inputs. This is perhaps the most
important distinguishing characteristic of this model.irfihthese deep hierarchical models can be adapted to
semi-supervised learning and learning with structuregutst Finally, in the presence of enormous amounts
of sensory data, the entire model can be trained onlineggsittg one example at a time.

Exact inference and maximum likelihood learning of DBM’s @mtractable. The original learning algorithm
for general Boltzmann machines used randomly initializeaddv chains in order to approximate gradients of
the likelihood function [3]. This learning procedure, hag was too slow to be practical. Recent advances in
the machine learning, statistics, and optimization comitreghallow us to develop fast learning algorithms for
deep multi-layer Boltzmann machines. Approximate infeeecan be performed using variational approaches,
such as mean-field. Learning can then be carried out by apgpéystochastic approximation procedure (SAP),
that uses Markov chain Monte Carlo to approximate the mededpectations ([6, 7, 8, 5]). SAP belongs to
the class of well-studied stochastic approximation athans of the Robbins-Monro type ([6, 4]) and provides
nice asymptotic convergence guarantees. The idea behdnd thethods is straightforward. lgtand Xt be

the current parameters and the state. TRérandd; are updated sequentially as follows:

e Given X?, a new stateX‘*! is sampled from a transition operat®y, (X**!; X!) that leaves,,
invariant.

e A new parametefi;, is then obtained by replacing the intractable model’s etgigm by the expec-
tation with respect to(*+1.

This unusual combination of variational methods and MCME€sisential for creating a fast learning algorithm
for DBM’s. Furthermore, the learning procedure can be gasiplied to undirected graphical models that
generalize Boltzmann machines to exponential family itigtions.

Figure 1 shows the architecture and the samples genera&éddHayer DBM, trained on the MNIST dataset.
Certainly, all samples look like the real handwritten digiAfter discriminative fine-tuning, the 2-layer BM
achieves an error rate of 0.95% on the full MNIST test setsT9)ito our knowledge, the best published result
on the permutation-invariant version of the MNIST task. sTisicompared to 1.4% achieved by SVM's, 1.6%
achieved by randomly initialized backprop, and 1.2% adhidwy the deep belief network.
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Figure 1:L&ft: Deep Belief Network vs. Deep Boltzmann Machifght: The architecture of two-layer deep Boltzmann
machine used for MNIST, along with random samples genefadedthis DBM by running the Gibbs sampler for 100,000
steps. The images shown are tinebabilities of the binary visible units given the binary states of thedeid units.
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Figure 2:Left: The architecture of deep Boltzmann machine used for NORght: Random samples from the training
set, and samples generated from the deep Boltzmann maghimering the Gibbs sampler for 10,000 steps.

When trained on NORB dataset, the DBM achieves a misclaadit error rate of 10.8% on the full test
set. This is compared to 11.6% achieved by SVM’s [1], 22.5%ieaed by logistic regression, and 18.4%
achieved by the K-nearest neighbours. To show that DBM'skearefit from additionalinlabeled training
data, we augmented the training data with unlabeled datgplyiag simple pixel translations, creating a
total of 1,166,400 training instances. After learning adjgenerative model, the discriminative fine-tuning
(using only the 24300 labeled training examples without @agslation) reduces the misclassification error
down to 7.2%. Figure 2 shows samples generated from the mbldeé that the model was able to capture
a lot of regularities in this high-dimensional highly-sttured data, including different object classes, various
viewpoints and lighting conditions.
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