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Recently, there has been considerable interest in employing unsupervised learning methods as feature ex-
tractors for supervised learning tasks such as classification. The literature shows that methods based on this
approach have proved to be competitive with established state-of-the-art machine learning strategies. One
important recent advance was the discovery by (Hinton, Osindero, & Teh, 2006) of the role that unsupervised
learning methods can play as an initialization for subsequent training for a supervised task. Unsupervised
learning methods that extract sparse features of the data have received particular attention and has been
shown by Raina, Battle, Lee, Packer, and Ng (2007) to significantly improve classification performance.
While there are some clear advantages of not including label information in learning the feature set or
initialization — for instance, Raina et al. (2007) use a sparse coding scheme trained on a large quantity of
“related” unlabeled data to augment the feature set training — the use of unsupervised feature extraction
gives no safeguard against highly discriminative features being cast aside. In relatively uncomplicated tasks,
such as classifying hand-written digits using the MNIST dataset (Lecun, Bottou, Bengio, & Haffner, 1998),
the lack of supervisory information in determining the representation is not likely to present a problem as
most of the salient features of the image are useful in the classification task. However in more complex tasks
where a large number of salient features of the data can have nothing to do with the target task, unsupervised
learning methods are not likely to efficiently generate discriminative features. On the other hand, the lesson
of the utility of extracting features of the unsupervised input data pattern, demonstrated in Hinton et al.
(2006) and in Raina et al. (2007) should not be ignored.
In this work, we focus on the problem of learning a sparse representation of data that stakes out a compro-
mise position: explicitly taking into account information such as the labels in a classification task, while
simultaneously attempting to capture descriptive features of the input data. Our method is based on a novel
probabilistic interpretation of the canonical ridge analysis (Vinod, 1976), a regularized version of canonical
correlation analysis.

Linear Latent Variable Models

Canonical correlation analysis (CCA) is a linear data projection method like principle components analysis
(PCA), but where one can explicitly take label or other side information into account. CCA takes two or
more datasets with corresponding entries (such as an input pattern and label) and determines projections
that maximize the correlation between the datasets. Consider the case of two corresponding variables X1 ∈
Rm1×n and x2 ∈ Rm2×n, each with mean zero, and projections CCCA
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corr2(C1X1, C2X2). The directions chosen by CCA can be shown to correspond to the solution of the
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While CCA offers a means of incorporating target information into the learned representation of the data
by constructing a projection of the input data that is maximally correlated with the target, it does so at the
expense of other information about the input variable. This could well be detrimental to the goal of classifi-
cation. After all, simple correlation is unlikely to capture all relevant information regarding the association
between the input pattern and the corresponding label.
A compromise between the relative extremes of PCA (completely unsupervised) and the correlation seek-
ing CCA, is the method of partial least squares (PLS). PLS describes a family of closely related algo-
rithms that differ in details concerning the intended application, be it classification, regression or sim-
ply data summarization. However all PLS algorithms share the objective of finding projections for
X1 and X2 that maximize covariance: i.e. find CPLS
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2 to maximize cov(C1X1, C2X2) =

var(C1X1)corr2(C1X1, C2X2)var(C2X2). Like CCA, PLS encodes correlation information, but PLS also
weights the variance of X1 and X2 in the choice of the principle subspace.



In practice, the PLS directions are often dominated by the variance components of the covariance and one
may wish to control the weighting of the variance contribution to the principle subspace. Canonical ridge
analysis (CRA) was developed as a means of exploring a continuum of projections between PLS and CCA
(Vinod, 1976; Rosipal & Krämer, 2006). CRA can be expressed directly as the solution, CCRA
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where the parameters k1 ≥ 0 and k2 ≥ 0 control the weighting of the variance components of X1 and X2

respectively. With k1 = k2 = 0, CCA is recovered. As k1 = k2 → ∞ the principle directions determined
by CRA tend to those recovered by PLS. A comparable eigenvalue problem yeilds a solution for CCRA

2 .

A Probabilistic Interpretation of Canonical Ridge Analysis

Building on the earlier work of Tipping and Bishop (1999) and their development of a probabilistic model
of PCA, Bach and Jordan (2005) proposed a probabilistic interpretation of canonical correlation analysis.
We further build on Bach and Jordan’s (2005) model to construct a probabilistic model of canonical ridge
analysis.
Taking the data to have mean zero as before, Bach and Jordan (2005) showed that the maximum likelihood
estimates of the parameters W1, W2, Ψ1, Ψ2 for the model over the data, x1 ∈ Rm1 and x2 ∈ Rm2 :

z ∼ N (0, Id), x1 ∼ N (W1z,Ψ1), x2 ∼ N (W2z,Ψ2), (3)

result in the model recovering the subspace spanned by the first d canonical directions. Let W = [W1,W2]T

and Ψ be a block diagonal matrix defined as Ψ = Diag(Ψ1,Ψ2), the marginal joint covariance of [x1, x2]
is Σ = WWT + Ψ. We now introduce an inverse Wishart prior over the marginal joint covariance:

Σ ∼ W−1(b, Φ) =
|Φ|b/2|Σ|(b+p+1)/2 exp{−trace(ΦΣ−1)/2}

2bp/2Γp(b/2)
(4)

with parameters b ∈ R, p = m1 + m2, and the matrix Φ defined as: Φ =
[

k1Im1 0
0 k2Im2

]
.

We show that by taking b = n − p − 1 (where n is the number of data points), the maximum a posteriori
(MAP) estimates of the model parameters result in subspace projections of x1 and x2, implicit in the posterior
expectations E[z | x1] and E[z | x2], that correspond to the subspaces spanned by the canonical ridge
analysis projections, CCRA

1 and CCRA
2 respectively as defined in eq. 2. Thus we now have a probabilistic

interpretation of canonical ridge analysis that affords a latent variable model and explores the space of data
representations between CCA and PLS.

Sparse Covariance Codes

The goal of this research project is to use our new latent variable interpretation of CRA to derive a novel
sparse coding scheme that captures covariance information between input patterns and the corresponding
label or other side information. By replacing the Gaussian prior on the latent variable z in eq. ?? with a
Laplace prior, we define a joint sparse coding model of x1 and x2 with the goal of extracting correlation
and/or covariance information from (x1, x2) data pairs. The parameters are estimated in a MAP gradient-
descent framework. At each learning iteration, the latent representation (or bases coefficients) z is optimized,
for each paired input pattern and label, via conjugate gradient in a convex setting. Then the model parameters
W and Ψ are updated in the direction of the gradient of the log posterior, incorporating the Wishart prior.
We present results exploring the properties of the sparse covariance coding scheme. We show the learned
bases for various values of the prior hyperparameters (k1 and k2), and evaluate the representation as the input
to a standard classifier. The sparse covariance coding scheme is compared to more established representation
learning schemes (such as PCA, PLS, CCA and unsupervised sparse codes (Olshausen & Field, 1996))
and across a range of experiments chosen to highlight the need for supervisory information in the feature
learning/selecting process.
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