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A majority of supervised learning algorithms process an input point independently of other points, based on
the assumptions that the input data is sampled independently and identically from a fixed underlying distribution.
However in a number of real-world problems the value of variables associated with each sample not only depends
on features specific to the sample, but also on the features and variables of other samples related to it. We say the
data possesses a relational structure.

Prices of real estate properties is one such example. Price of a house is a function of its individual features,
such as the number of bedrooms, etc. In addition the price is also influenced by features of the neighborhood in
which it lies. Some of these features are measurable, such as the quality of the local schools. However most of
them that make a particular neighborhood desirable are very difficult to measure directly, and are merely reflected
in the price of houses in that neighborhood. Hence the “desirability” of a location/neighborhood can be modeled as
a latent variable, that must be estimated as part of the learning process, and efficiently inferred for unseen samples.

A number of authors have recently proposed architectures and learning algorithms that make use of relational
structure. The earlier techniques were based on the idea of influence propagation [1, 3, 6, 5]. Probabilistic Re-
lational Models (PRMs) were introduced in [4, 2] as an extension of Bayesian networks to relational data. Their
discriminative extensions, called Relational Markov Networks (RMN) were later proposed in [7].

This paper introduces a general framework for prediction in relational data. An architecture is presented that
allows efficient inference algorithms for continuous variables with relational dependencies. The class of models
introduced is novel in several ways: 1. it pertains to relational regression problems in which the answer variable
is continuous; 2. it allows inter-sample dependencies through hidden variables as well as through the answer
variables; 3. it allows log-likelihood functions that are non-linear in the parameters (non exponential family), which
leads to non-convex loss functions but are considerably more flexible; 4. it eliminates the intractable partition
function problem through appropriate design of the relational and non-relational factors.

The idea behind a relational factor graph is to have a single factor graph that models the entire collection of
data samples and their dependencies. The relationships between samples is captured by the factors that connect the
variables associated with multiple samples. We are given a set of IV training samples, each of which is described
by a sample-specific feature vector X* and an answer to be predicted Y. Let the collection of input variables be
denoted by X = {X*? i =1... N}, the output variablesby Y = {Y*, i = 1... N}, and the latent variables by Z.
The EBRFG is defined by an energy function of the form E(W,Z,Y,X) = E(W,Z, Y, ..., YN X1 ... XN),
in which W is the set of parameters to be estimated by learning. Given a test sample feature vector X, the model
is used to predict the value of the corresponding answer variable Y°. One way to do this is by minimizing the
following energy function augmented with the test sample (X, Y?)

Yo = argminyo{mzin EW,Z,Y°, ... .YN X% .. XM (D)

For it to be usable on new test samples without requiring excessive work, the energy function must be carefully
constructed is such a way that the addition of a new sample in the arguments will not require re-training the
entire system, or re-estimating some high-dimensional hidden variables. Moreover, the parameterization must be
designed in such a way that its estimation on the training sample will actually result in good prediction on test
samples. Training an EBRFG can be performed by minimizing the negative log conditional probability of the
answer variables with respect to the parameter . We propose an efficient training and inference algorithm for
the general model.



The architecture of the factor graph that was used for predicting the prices of real estate properties is shown
in Figure 1 (top). The price of a house is modeled as a product of two quantities: 1. its “intrinsic” price which
is dependent only on its individual features, and 2. the desirability of its location. A pair of factors E;yz and
E! are associated with every house. ijz is non-relational and captures the sample specific dependencies. It is
modeled as a parametric function with learnable parameters W,,.. The parameters W, . are shared across all
the instances of Efﬂyz The factor E?_ is relational and captures the dependencies between the samples via the
“hidden” variables Z?. These dependencies influence the answer for a sample through the intermediary hidden
variable d'. The variables Z* can be interpreted as the desirability of the location of the i-th house, and d* can be
viewed as the estimated desirability of the house using the desirabilities of the houses related to it (those that lie
in its vicinity). This factor is modeled as a non-parametric function. In particular we use a locally weighted linear
regression, with weights given by a gaussian kernel.

The model is trained by maximizing the likelihood of the training data, which is realized by minimizing the

negative log likelihood function with respect to W and Z. However we show that this minimization reduces to
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where R(Z) is a regularizer on Z (an Ly regularizer in the experiments). This is achieved by applying a type of
deterministic generalized EM algorithm. It consists of iterating through two phases. Phase 1 involves keeping the
parameters W fixed and minimizing the loss with respect to Z. The loss is quadratic in Z and we show that its
minimization reduced to solving a large scale sparse quadratic system. We used conjugate gradient method using
an adaptive threshold to minimize it. Phase 2 involves fixing the hidden variables Z and minimizing with respect
to W. Since the parameters W are shared among the factors, this can be done using gradient descent. Inference on
a new sample X ° involves computing its neighboring training samples, and using the learnt values of their hidden
variables Z» to get an estimate of its “desirability” d°; passing the house specific features X} through the learnt
parametric model to get its “intrinsic” price; and combining the two to get its predicted price.

The model was trained and tested on a very challenging and diverse real world dataset that included 42,025
sale transactions of houses in Los Angeles county in the year 2004. Each house was described using a set of 18
house specific attributes like gps coordinates, living area, year build, number of bedrooms, etc. In addition, for
each house, a number of neighborhood specific attributes obtained from census tract data and the school district
data were also used. It included attributes like average house hold income of that area, percentage of owner
occupied homes etc. The performance of the proposed model was compared with a number of standard non-
relational techniques that that have been used in literature for this problem, namely nearest neighbor, locally
weighted regression, linear regression, and fully connected neural network. EBRFG gives the best prediction
accuracy by far, compared to other models. In addition we also plot the “desirabilities” learnt by our model
(Figure 1 (bottom)). The plot shows that the model is actually able to learn the “desirabilities” of various areas in
a way that is reflective of the real world situation.
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Table 1: Prediction accuracies of various algorithms on the test set. Absolute Relative Forecasting Error ( fe) was measured.
The error (fe;) on the th sample is defined as fe; = |A; — Pr;i|/A;, where A; is the actual selling price and Pr; is the
predicted price. Three performance quantities on the test set are reported; percentage of houses with a forecasting error of less
than 5%, with less than 10% and with less 15%.

MODEL CLASS MODEL <5% <10% < 15%

NON-PARAMETRIC | NEAREST NEIGHBOR 25.41 47.44 64.72

NON-PARAMETRIC | LOCALLY WEIGHTED REGRESSION 32.98 58.46 75.21

PARAMETRIC LINEAR REGRESSION 26.58 48.11 65.12

PARAMETRIC FULLY CONNECTED NEURAL NETWORK | 33.79 60.55 76.47

HYBRID RELATIONAL FACTOR GRAPH 39.47 65.76 81.04
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Figure 1: (Top) A typical Energy Based Relational Factor Graph showing the connections between three samples. The
factors E;yz capture the dependencies between the features of individual samples and their answer variable Y, as well as the
dependence on local latent variables d'. The factors E,, captures the dependencies between the hidden variables of multiple
samples. The connection to these two factors may exist only from a subset of samples that are related to sample ©. When the
energy of factor E,, is quadratic in d. (Bottom) The color coded values of the desirability surface at the location of the test
samples. For every test sample, the estimate of its desirability is computed and is color coded according to its value. Blue color
implies low desirability and red color implies high desirability.



