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In many application areas where graphical models are usgavhare their structure is learned from
data, the end goal is neither prediction nor density esiimaRather, it is the uncovering of discrete rela-
tionships between entities. For example, in computatibr@bgy, one may be interested in discovering
which proteins within a large set of proteins interact witte@nother. In these problems, relationships
can be represented by arcs in a graphical model. Consegugitén a learned model, we are interested
in knowing how many of the arcs are realran-spurious

In our approach to this problem, we estimate and contrdFttiee Discovery Rat@-DR) [1] of a set of
arc hypotheses. The FDR is defined as the (expected) propatiall hypothesese(g, arc hypotheses)
which we label as true, but which are actually falge.(the number of false positives divided by the
number of total hypotheses called true). In our evaluatioves concentrate on directed acyclic graphs
(DAGS) for discrete variables with known variable ordegngs our problem of interest (concerning a
particular problem related to HIV vaccine design) has theeperties.

We use the termarc hypothesigo denote the event that an arc is present in the underlystghuition
of the data. In a typical computation of FDR, we are given athypotheses where each hypothesiss
assigned a score; (traditionally, a test statistic, or the p-value resultfngm such a test statistic). These
scores are often assumed to be independent and identigsilibuted, although there has been much
work to relax the assumption of independence [2]. The FDRisputed as a function of a threshold,
on these scoredy DR = F'DR(t). For threshold, all hypotheses witls; > ¢ are said to be significant
(assuming, without loss of generality, that the higher aesabe more we believe a hypothesis). The FDR

F(t)

at threshold is then given byF DR(t) = E [W} where S(t) is the number of hypothesis deemed

significant at threshold and F'(¢) is the number of those hypotheses which are false, and wkpeet@-
tion is taken with respect to the true joint distribution bétvariables. When the number of hypotheses
is large, as is usually the case, one can take the expectdttbe numerator and denominator separately:

FDR(t) = E [%} ~ g[[gg))}} Furthermore, it is often sufficient to use the obsen#d) as an ap-

proximation for E[S(t)]. Thus the computation af DR(t) boils down to the computation df[F(t)].
One approximation for this quantity which can be reasonable[F'(t)] = Ey[F(t)], whereE, denotes
expectation with respect to the null distribution (the wligttion of scores obtained when no hypotheses
are truly significant), and it is this approach that we taketeNthat the FDR is closely related positive

predictive valugPPV), wherePPV (t) =1 — % That is, FDR is 1 minus expected PPV.

Applying this approach to estimating the number of non-gusrarcs in a given (learned) DAG model,
we take as input a particular structure search algorithfwhich may have hyperparameters such #isat
control the number of arcs learned) and generadiz¢ and F'(-) to be functions o&. In particular,S(a) is
the number of arcs found hy and F'(a) is the number of those arcs whose corresponding hypotheses a
false. Asin the standard FDR approach, we use the appragima(.S(a)) = N (D, a), whereN (D, a)

is the number of arcs found by applyimgto the real dataD. In addition, we estimaté(F'(a)) to be

N (D1, a) averaged over multiple data set¥, ¢ = 1,...,Q, drawn from a null distribution. That is,
@ a oy
FDR(a) = E [g((;‘))] ~ g[[g((;‘))}} = (HZ‘ZT\}(JZ)(S;’ V€ The addition of one to the numerator smooths

the estimate oF[F'(a)] so as to take into account the number of random permutatierfisrmed.
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Figure 1: Evaluation of FDR estimates. Actual versus egath&xpected PPV are shown. The dashed
line denotes the idealized curve, where actual and estineateected PPV are equal.

In our implementation of this approach, we assume dhlaas the property that it can be decomposed
into independent searches for the parents of each noden @iigassumption, when we learn the parent
set of a given node, we create the null distribution for thatenby permuting the real data for the corre-
sponding variable. This permutation guarantees that elhgpotheses are false in the null distribution.
The generation of these null distributions is computatigrefficient as well as non-parametric, making
them applicable to situations where the models learnedeaserépresentative of the data.

To determine whether our approximations are reasonablettipe, we draw samples from synthetic
graphical models, run the algorithm above to compute the DR then use the ground truth generating
structure to measure the true FDR. For example, we evaltlagdccuracy of our approach using data
generated from the Alarm network [3], which contains 37 @Ra$ed nodes and 46 afcErom this model,
we generated three data sets with sample size 100 and thtesamiple size 1000.

These models were learned by greedy structure searcmgtéim the empty graph, where a single
arc was added or deleted at each step of the search until @eddre could not be increased. Depending
on the setting of the structure prior, more or fewer arcs esened during search, and thus we were able
to generate a range of arcs learned (and hence a range of kibRsxluation of our method.

The results are shown in Figure 1, which plots the expectsdip® predictive value against the actual
positive predictive value according to the generatingcstme of the Alarm network. The expected PPVs
(positive predictive values) plotted are simdly- FDR. The curves tend to stay reasonably accurate
for high PPVs, and then gradually peel away from the idedlzérve, in a conservative manner. In real
applications, the PPV range of interest is typically in tightend because one does not want an abundance
of false hypotheses to pursue.

At the workshop, we will describe experimental results omeotsynthetic data sets, and on a real
problem in HIV vaccine design.
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1We arbitrarily resolved the four non-compelled edges imtloelel by placing LVFailure before History, Anaphylaxis bief
TPR, PulmEmbolus before PAP, and MinVolSet before VentMach



