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In many application areas where graphical models are used and where their structure is learned from
data, the end goal is neither prediction nor density estimation. Rather, it is the uncovering of discrete rela-
tionships between entities. For example, in computationalbiology, one may be interested in discovering
which proteins within a large set of proteins interact with one another. In these problems, relationships
can be represented by arcs in a graphical model. Consequently, given a learned model, we are interested
in knowing how many of the arcs are real ornon-spurious.

In our approach to this problem, we estimate and control theFalse Discovery Rate(FDR) [1] of a set of
arc hypotheses. The FDR is defined as the (expected) proportion of all hypotheses (e.g., arc hypotheses)
which we label as true, but which are actually false (i.e., the number of false positives divided by the
number of total hypotheses called true). In our evaluations, we concentrate on directed acyclic graphs
(DAGs) for discrete variables with known variable orderings, as our problem of interest (concerning a
particular problem related to HIV vaccine design) has theseproperties.

We use the termarc hypothesisto denote the event that an arc is present in the underlying distribution
of the data. In a typical computation of FDR, we are given a setof hypotheses where each hypothesis,i, is
assigned a score,si (traditionally, a test statistic, or the p-value resultingfrom such a test statistic). These
scores are often assumed to be independent and identically distributed, although there has been much
work to relax the assumption of independence [2]. The FDR is computed as a function of a threshold,t,
on these scores,FDR = FDR(t). For thresholdt, all hypotheses withsi ≥ t are said to be significant
(assuming, without loss of generality, that the higher a score, the more we believe a hypothesis). The FDR

at thresholdt is then given byFDR(t) = E
[

F (t)
S(t)

]

, whereS(t) is the number of hypothesis deemed

significant at thresholdt andF (t) is the number of those hypotheses which are false, and where expecta-
tion is taken with respect to the true joint distribution of the variables. When the number of hypotheses
is large, as is usually the case, one can take the expectationof the numerator and denominator separately:

FDR(t) = E
[

F (t)
S(t)

]

u
E[F (t)]
E[S(t)] . Furthermore, it is often sufficient to use the observedS(t) as an ap-

proximation forE[S(t)]. Thus the computation ofFDR(t) boils down to the computation ofE[F (t)].
One approximation for this quantity which can be reasonableis E[F (t)] u E0[F (t)], whereE0 denotes
expectation with respect to the null distribution (the distribution of scores obtained when no hypotheses
are truly significant), and it is this approach that we take. Note that the FDR is closely related topositive
predictive value(PPV), wherePPV (t) = 1 −

F (t)
S(t) . That is, FDR is 1 minus expected PPV.

Applying this approach to estimating the number of non-spurious arcs in a given (learned) DAG model,
we take as input a particular structure search algorithma (which may have hyperparameters such asκ that
control the number of arcs learned) and generalizeS(·) andF (·) to be functions ofa. In particular,S(a) is
the number of arcs found bya andF (a) is the number of those arcs whose corresponding hypotheses are
false. As in the standard FDR approach, we use the approximation E(S(a)) u N(D,a), whereN(D,a)
is the number of arcs found by applyinga to the real dataD. In addition, we estimateE0(F (a)) to be
N(Dq,a) averaged over multiple data setsDq, q = 1, . . . , Q, drawn from a null distribution. That is,

FDR(a) = E
[

F (a)
S(a)

]

u
E[F (a)]
E[S(a)] u

(1+
∑Q

q=1
N(Dq ,a))/Q

N(D,a) . The addition of one to the numerator smooths

the estimate ofE0[F (a)] so as to take into account the number of random permutations performed.
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Figure 1: Evaluation of FDR estimates. Actual versus estimated expected PPV are shown. The dashed
line denotes the idealized curve, where actual and estimated expected PPV are equal.

In our implementation of this approach, we assume thata has the property that it can be decomposed
into independent searches for the parents of each node. Given this assumption, when we learn the parent
set of a given node, we create the null distribution for that node by permuting the real data for the corre-
sponding variable. This permutation guarantees that all arc hypotheses are false in the null distribution.
The generation of these null distributions is computationally efficient as well as non-parametric, making
them applicable to situations where the models learned are less representative of the data.

To determine whether our approximations are reasonable in practice, we draw samples from synthetic
graphical models, run the algorithm above to compute the FDR, and then use the ground truth generating
structure to measure the true FDR. For example, we evaluatedthe accuracy of our approach using data
generated from the Alarm network [3], which contains 37 CPT-based nodes and 46 arcs.1 From this model,
we generated three data sets with sample size 100 and three with sample size 1000.

These models were learned by greedy structure search starting from the empty graph, where a single
arc was added or deleted at each step of the search until the BIC score could not be increased. Depending
on the setting of the structure prior, more or fewer arcs are learned during search, and thus we were able
to generate a range of arcs learned (and hence a range of FDRs)for evaluation of our method.

The results are shown in Figure 1, which plots the expected positive predictive value against the actual
positive predictive value according to the generating structure of the Alarm network. The expected PPVs
(positive predictive values) plotted are simply1 − FDR. The curves tend to stay reasonably accurate
for high PPVs, and then gradually peel away from the idealized curve, in a conservative manner. In real
applications, the PPV range of interest is typically in the high end because one does not want an abundance
of false hypotheses to pursue.

At the workshop, we will describe experimental results on other synthetic data sets, and on a real
problem in HIV vaccine design.
Topic: graphical models Preference: oral/poster
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1We arbitrarily resolved the four non-compelled edges in themodel by placing LVFailure before History, Anaphylaxis before
TPR, PulmEmbolus before PAP, and MinVolSet before VentMach.
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