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Sparse overcomplete representations are useful in many vision applications, such as feature extraction [7],
recognition [6], denoising, and inpainting of natural images [2]. Many such algorithms have focused on
learning a dictionary of basis functions such that any image patch can be reconstructed as a linear combina-
tion of a small subset of them. Unfortunately, finding the coefficients corresponding to a new image patch
is expensive because it involves optimizing the reconstruction error under non-quadratic sparsity constraints
(such as an L1 penalty) [5, 3, 4].

We propose an algorithm that learns basis functions in such a way that the optimal set of coefficients repre-
senting the input patch can be efficiently computed by a feed-forward pass through a simple parametrized
function (an encoder), without requiring any optimization.

The coefficient vector z ∈ Rn is used to model the input space y ∈ Rm in terms of a basis set Φ ∈ Rm×n. We
use `2 norm for penalizing the reconstruction error, and `1 norm for enforcing the sparsity of the coefficient
vector:

‖y − Φz‖22 + αz‖z‖1

which is equivalent to the solution using approximate decomposition of input signals as given in Basis
Pursuit algorithm [1]. Based on this formulation we propose to learn the basis set and an encoder for
efficient inference of the coefficient vector by minimizing over the following loss functional:

L(y, z,Φ,Ψ) = ‖y − Φz‖22 + αz‖z‖1 + αe‖z −Ψ(y)‖22

where Ψ(y) : Rm 7→ Rn is the encoder function, and the columns of Φ are constrained to have unit `2 norm.
The first term in the above loss penalizes the reconstruction error, the second term penalizes the sparsity of
the representation, and the last term ensures that coefficient vector is predictable by the encoder.

We present an in-depth experimental comparison between machines trained with different encoders, e.g.
linear and non-linear encoders. We also compare different training algorithms, such as standard back-
propagation of the error and deterministic EM, which treats the code as latent variable in a block coordinate
descent algorithm. The latter is implemented as on on-line learning algorithm as follows:
1. minimize L with respect to z, thus obtaining the coefficient vector z∗ that gives best reconstruction under
sparsity and predictability constraints.
2. update parameters of Ψ and Φ using the optimal code z∗.
3. normalize the columns of Φ to have unit `2 norm.



EM training, as explained above, yields basis functions that look like gabor filters and are similar to filters
usually found with algorithms optimized for learning useful sparse features, while training with backprop-
agation leads to more localized basis functions that might not be useful for applications other than mere
reconstruction.

We evaluate these different methods by using both the “unsupervised” objective that was used to train
them, as well as a “supervised” objective, such as recognition error of a classifier trained on the learned
representation. Results depend on how tough the learning task is. If the code is not highly overcomplete,
even a linear encoder trained by back-propagation of the error can give acceptable accuracy.

We demonstrate our algorithm by learning highly overcomplete dictionaries of basis functions from a set of
natural image patches as shown for instance in fig. 1, and by applying the algorithm as building block for
training a deep network that efficiently recognizes objects in natural images.
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Figure 1: 256 basis functions learned by deterministic EM algorithm trained on 12x12 natural image patches ran-
domly extracted from the Berkeley dataset.


