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The problem of supervised dimensionality reduction is to combine learning a good predictor with finding a pre-
dictive structure, such as a low-dimensional representation which captures the predictive ability of the features while
ignoring the “noise”. Indeed, performing dimensionality reduction simultaneously with learning a predictor often
results into a better predictive performance than performing DR step separately from learning a predictor, as was
demonstrated previously (e.g., see SVDM of [2], SDR-MM of [3], etc.), just as an embedded feature selection (e.g.,
sparse regression) often outperforms filter methods.

However, existing SDR approaches are typically limited to specific settings. For example, SVDM [2] effectively
assumes a Gaussian-noise data model when minimizing sum-squared reconstruction loss, and is restricted only to
classification problems when using SVM-like hinge loss as its prediction loss. SDR-MM method of [3] treats various
data types (e.g., binary and real-valued) but is again limited only to multi-class classification problems. Recent work
on distance metric learning [6, 5] is also limited to Gaussian data assumption, and discrete-label (typically binary)
classification problem [6, 5]. Indeed, a majority of supervised dimensionality methods can be viewed as jointly
learning a particular (often just linear) mapping from the feature space to a low-dimensional hidden-variable space, as
well as a particular classifier that maps the hidden variables to the class label.

Our framework is more general as it treats both features and labels as exponential-family random variables, and
allows to mix-and-match data- and label-appropriate generalized linear models, thus handling both classification and
regression, with both discrete and real-valued data. It can be also viewed as a discriminative learning based on
minimization of conditional probability of class given the hidden variables, while using as a regularizer the conditional
probability of the features given the low-dimensional hidden-variable “predictive” representation.

The main advantage of our approach, besides generalization to a wider range of SDR problems, is that it uses sim-
ple, closed-form update rules when performing its alternate minimization procedure, and does not require performing
optimization at every iteration of the procedure. This method yields a really short Matlab code, fast performance, and
is always guaranteed to converge (to a local minimum, just like most of the existing hidden-variable model learning
approaches). The convergence property, as well as closed form update rules, follow from the use of auxiliary func-
tions bounding each part of the objective function (i.e., reconstruction and prediction losses). We exploits the additive
property of auxiliary functions in order to “stack” together multiple objectives and perform, in a sense, a “multi-way”
DR, i.e. joint dimensionality reduction from several datasets, such as feature vectors X and label Y.

More specifically, let X be an N × D data matrix with entries denoted Xnd where N is the number of i.i.d.
samples, and n-th sample is a D-dimensional row vector denoted xn. Let Y be an N dimensional vector of class
labels. We assume that our data points xn, n = 1, ..., N , are noisy versions of some “true points” θn which live
in a low-dimensional space, and that this low-dimensional representation is predictive about the class. It is assumed
that noise is applied independently to each coordinate of xn (i.e., that all dependencies among the dimensions are
captured by low-dimensional representation), and that the noise follows exponential-family distributions with natural
parameters θn, with possibly different members of the exponential family used for different dimensions. Namely, it is
assumed that N×D parameter matrix Θ is a product of two low-rank matrices Θnd =

∑
l UnlVld where the rows of the

L×D matrix V correspond to the basis vectors, and the columns of the N×L matrix U correspond to the coordinates
of the “true points” Θn, n = 1, ...N in the L-dimensional space (for non-Gaussian noise, a nonlinear nonlinear surface
in the original data space). We assuming exponential-family noise distribution for each Xnd with the corresponding
natural parameter Θnd, i.e. log P (Xnd|Θnd) = XndΘnd − G(Θnd) + log P0(Xnd) where G(Θnd) is the cumulant
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or log-partition function which defines particular exponential family, e.g., Gaussian, multinomial, Poisson, etc. We
can now view each row Un as a new, low-dimensional representation of the corresponding data sample Xn. We also
assume that the class label Y is a noisy function of this underlying low-dimensional representation, i.e. Yn = f(Un)
where f is some stochastic function. Generally, we can assume there are K prediction problems, so that Y is an
N × K matrix. We will again assume noisy linear model with some exponential-family noise, log P (Yn|ΘYn) =
YnΘYn

− Gy(ΘYn
) + log P0(Yn). In general, we will use a generalized linear model (GLM) E(Xd) = fd(UVd)

for d-th feature (column d in X) with possibly different link functions fd, and yet another GLM E(Y ) = fy(UW )
for the class label, where the logistic link function fy(Θ̂) can be used for binary classification, identity link function
fy(Θ̂) = Θ̂, or any other appropriate link function for real-valued GLM can be used for regression.

SDR problem is formulated as joint optimization of two loss functions corresponding to the reconstruction loss
Lr as a negative log-likelihood of the data Lr = −LX(ΘX) and prediction loss Lp as the negative log-likelihood of
the class labels Lp = −LY (ΘY ), where LX(ΘX) =

∑
nd log P (Xnd|ΘYnd

), LY (ΘY ) =
∑

nk log P (Ynk|ΘYnk
) and

where ΘX = UV , ΘY = UW , and the likelihoods above correspond to particular members of exponential family The
optimization problem can be written as minU,V,W Lp +αLr where α is the trade-off constant, or Lagrange multiplier.

While it is hard to come up with a globally optimal solution for the above (nonconvex) problem, we can employ
the auxiliary function approach commonly used in EM-style algorithms in order to derive a set of closed-form iterative
update rules that are guaranteed to converge to a local minimum. It is easy to show that an auxiliary function for the
SDR objective can be derived for an arbitrary pair of Lr and Lp provided that we know their corresponding auxiliary
functions, and using an additive property of of auxiliary functions. Namely, if Q1(θ̂, θ) and Q2(θ̂, θ) are auxiliary
functions for F1(θ) and F2(θ), then it is easy to show that Q(θ̂, θ) = α1Q1(θ̂, θ)+ α2Q2(θ̂, θ) is an auxiliary function
for F (θ) = α1F1(θ)+α2F2(θ), where αi > 0 for i = 1, 2. Also, it is obvious that a function is an auxiliary for itself,
i.e. Q(θ̂, θ) = F (θ̂) is an auxiliary function for F (θ). This observations allows us to combine various dimensionality
reduction approaches with appropriate predictive loss functions, given appropriate auxiliary functions for both. For a
Bernoulli variables we use the variational bound on log-likelihood L(θ) = log P (s|θ) that was originally proposed
by [1] and subsequently used in logistic PCA algorithm of [4] (there is also a recent generalization of this bound to
multinomial logistic regression that we plan to incorporate in our algorithm), while for Gaussian variables we just
use the loglikelihood (sum-squared loss) itself. As a result, we obtain closed-form update rules for an alternating
minimization that solves our SDR problem for a variety of data and label types.

We perform a variety of experiments, both on simulated and real-life problems. Results on simulated datasets
convincingly demonstrate that our SDR approaches are capable of discovering underlying low-dimensional structure
in even highly-dimensional noisy data, while outperforming SVM and SVDM, often by far, and practically always
beating the unsupervised DR followed by learning a predictor. On real-life datasets, SDR approaches continue to beat
the unsupervised DR by far, while often matching or somewhat outperforming SVM and SVDM.
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