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1 Introduction

Semiparametric models, consisting of a (finite-dimensional) parametric component, and a non-parametric
functional component, are a powerful tool for high-dimensional data analysis. In this work, we study efficient
methods for estimating a particular class of semiparametric models, known as single index regression models.
This model is parameterized by a vector 5 € RP and a function g : R — R. The response variables Y; € R
are linked to the covariates X; € RP by the semiparametric regression model

Yi=9(8"Xi)+ € (1)

where ¢; is an additive zero mean noise, independent of X;. The function g is assumed to belong to some
given class of functions G, for instance differentiable functions, or monotonically increasing functions. Given
n ii.d. samples S = {(X;,Y;),i =1,...,n} from the model (1), the task is to estimate both the parametric
component 8 and the unknown function g.

In this model (1), the nonparametric component g takes as its argument a unidimensional summary of
the covariates—called the index—via the linear projection 37 X. For this reason, estimation in this model
does not suffer from the curse of dimensionality intrinsic to general non-parametric estimation. Single index
models have thus been used for density estimation in many machine learning applications, for instance
as product of a collection of single index functions when g is specified [2, 5, 4], as well as sums of single
index models; for instance the projection pursuit regression procedure [1] estimates single index models in a
stepwise manner, obtaining an additive combination of single index functions as an estimate of the regression
function. The methods above, with or without the estimation of g, however all entail non-convex estimation
problems. The solutions thus obtained are thus not only suboptimal estimates with respect to their models,
but can also be unstable.

In this work, we develop a novel two-stage estimation procedure, in which the loss function applied to
0 is adapted as a function of the current estimate of g. For the case of monotonic functions g, by using
appropriate classes of Bregman divergences, we obtain an overall procedure that involves only tractable
convex optimization steps, and is provably Fisher consistent. We start off by noting that estimating a single
index model using the least squares loss function is a non-convex estimation task. Consider the population
least squares functional, namely mingeg gere E(Y — g(87X))%. By computing the Hessian with respect to
B, it is straightforward to see that this function is not convex in terms of § for general functions g. (It is
convex, for instance, for linear g.) Given this non-convexity, we are motivated to consider a larger class
of loss functions, in particular the class of Bregman divergences. For any Bregman function F (roughly, a
strictly convex differentiable function), the Bregman divergence Dg(a,b) is defined as,

Di(al|b) : = F(a) = F(8) = VF(5) (a - b) (2)

The Bregman divergence induced by a univariate Bregman function F', between Y and g(57X) is then given
by,

Dp (Y, [lg(8"z)) = F(Y) = F(g(8" X)) = f(g(B" X)(Y —g(5" X)) 3)



where f = F’. The least squares loss function is a special case, obtained by setting F(z) = %22. Of interest
to us are alternative choices of Bregman distances; in particular, the following result shows that for any

monotonic g, there is always a Bregman divergence for which estimation of § reduces to a convex problem:

Proposition 1. Consider the single index model (1) when g belongs to the class G of monotonically increasing
functions. Then for any g € G, there erists a Bregman divergence Dp (4 for which the estimation of (3 is a
convex problem. In particular, define G(v) = ffoo g(t)dt, and define the function

Fu) = ilég {vTu—Gv)} (4)

The Bregman divergence Dp gy induced by this choice of F', when applied to the pair y and g(8"x), takes the
form

Dr) (yll9(87x)) = G(B"x) = BTay + F(y), (5)
which is a convex function of B whenever g is monotonic.

Note that the function (4) is the Fenchel conjugate [3] of the function G. Overall, this result motivates
the following practical scheme. Since G is convex for monotonic g, optimizing the “surrogate” function (5)
for B is a convex program. On the other hand, for fixed (3, estimation of the function ¢ in the single index
model (1) is a standard problem in isotonic regression. Thus, we have the following two-stage procedure for
estimating a single index model:

(a) Given a convex estimate G , alternatively, a monotone estimate g, minimize the associated “surrogate”
loss function (5) with respect to 3.

(b) given an estimate 3, obtain an estimate g by performing a monotone or isotonic regression of the
response Y on the covariates 7 X.

Note that the key aspect of this method is that the Bregman loss in step (a) is adapted, depending on
the current estimate g of the semiparametric component. We have implemented this scheme, and found
excellent practical performance on various models. It can be shown that minimization of the surrogate
loss (5) is always Fisher consistent for 8. In particular, given g* from the true model, consider the surrogate
loss function (5) defined by G* = f g*. This method is Fisher consistent, in the sense that the population
minimizer is always equal to the true $*. We are currently exploring conditions under which it can be
guaranteed that the sample minimizers over both g and g converge to this population optimum.
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