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Introduction

We present a stream algorithm for large scale classification (in the context of ℓ2-SVM) by leveraging connections
between learning and computational geometry. The stream model [1] imposes the constraint that only a single
pass over the data is allowed. We study the streaming model for the problem of binary classification with SVMs
and propose a single pass SVM algorithm based on the minimum enclosing ball (MEB) of streaming data [2]. We
show that the MEB updates for the streaming case can be adapted to learn the SVM weight vector using simple
Perceptron-like update equations. Our algorithm performs polylogarithmic computation at each example, requires
very small and constant storage (O(D) where D is the dimensionality of input space). Experimental results show
that, even in such restrictive settings, we can learn efficiently in just one pass and get accuracies comparable to other
state-of-the-art SVM solvers.

The 2-class ℓ2-SVM [3] is defined by a hypothesis f(x) = w
T ϕ(x), and a training set consisting of N points

{zn = (xn, yn)}N
n=1

with yn ∈ {−1, 1} and xn ∈ R
D. The only difference between the ℓ2-SVM and the standard

SVM is that the penalty term has the form (C
∑

n ξ2

n) rather than (C
∑

n ξn). We assume a kernel K with associated
nonlinear feature map ϕ. We assume ϕ(xn) has unit norm.

Our approach is based on the equivalence of ℓ2-SVM and the minimum enclosing balls problem [3]. A minimum
enclosing ball (MEB) instance is defined by a set of points x1, . . .xN ∈ R

D and a metric d : R
D × R

D → R
≥0. The

goal is to find a point (the center) c ∈ R
D that minimizes the radius R = maxn d(xn, c). It was shown in [3] that a

solution to the ℓ2 SVM can be obtained by solving an MEB with data points defined by zn = ynϕ̂(xn), where ϕ̂(·)
adds N -many dimensions to the input space (one per data point) all zeros except one position with value

√

1/C. A
solution to the MEB on this data provides an exact solution to the ℓ2 SVM, where the SVM weight vector can be
recovered as the center of the MEB.

Solving the exact MEB is prohibitively expensive as it require solving a quadratic program. Thus, attention has
turned to efficient approximate solutions for the MEB. A δ-approximate solution to the MEB (δ > 1) is a point c such
that maxn d(xn, c) ≤ δR∗, where R∗ is the radius of the optimal MEB solution. For example, A (1+ǫ)-approximation
for the MEB can be obtained by extracting a very small subset (of size O(1/ǫ)) of the input called a core-set [4], and
running an exact MEB algorithm on this set [5]. This is the method originally employed in the CVM [3]. Note that
a δ-approximation for the MEB directly yields a δ-approximation for the regularized cost function associated with
the SVM problem. Unfortunately, the core-set approach requires O(1/ǫ) passes over the training data.

A Streaming Algorithm

Two single-pass streaming algorithms for the MEB problem are known. The first [6] finds a (1 + ǫ) approximation
using O((1/ε)⌊D/2⌋) storage and O((1/ε)⌊D/2⌋N) time. Unfortunately, the exponential dependence on D makes
this algorithm impractical for learning problems. At the other end of the space-approximation tradeoff, the second
algorithm [2] stores only the center and the radius of the current ball, requiring exactly D + 1 floats. This algorithm
yields a 3/2-approximation.

We adapt the algorithm of [2] for computing an approximate maximum margin classifier. Because we perform
only a single pass over the data and the N -many additional dimensions are all mutually orthogonal, we never need to
explicitly store them. It is easy to verify that the update equations for weight vector (w) and the margin (determined
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# Examples Perceptron Pegasos LASVM StreamSVM

Data Set Dim Train Test Acc nSV Acc nSV Acc nSV Acc nSV

Synthetic A 2 20,000 200 95.5 1765 92.5 - 96.5 5 97.0 6
Synthetic B 3 20,000 200 68.0 7583 63.5 - 64.5 8 68.5 5

Synthetic C 5 20,000 200 77.0 3052 65.0 - 68.0 10 87.5 6

Waveform 21 4000 1000 47.4 1112 71.23 - 77.6 9 78.4 19

MNIST (0vs1) 784 12,665 2115 99.47 41 99.3 - 98.82 12 99.71 8

MNIST (8vs9) 784 11,800 1983 95.9 399 91.5 - 90.32 12 94.7 6

IJCNN 22 35,000 91,701 64.82 2111 84.50 - 74.27 9 87.81 26
w3a 300 44,837 4912 89.27 3986 74.02 - 96.95 9 89.06 12

Table 1: Single pass classification accuracy and number of support vectors found by three algorithms (using linear
kernel). (For Pegasos, we use a selection set size of k = 1 and found that in these conditions it selected every point
as a support vector. Data sets are listed with their dimensionality and the size of their training and test sets.)

by radius R) in our algorithm correspond to the center and radius update equations for the corresponding MEB
instance [2]. Also note that the distance calculations are being done in the augmented feature space.

Our algorithm functions by reading the first data point (y1,x1) and initializing weights w = ynx1 and the
“radius” (akin to the inverse margin) to 0. A slack variable ξ2 is initialized to 1. As additional data points (yn,xn)
arrive, a distance d2 = ‖w − ynxn‖2 + ξ2 + 1/C is computed. If d < R, this point is ignored. Otherwise, the
weights are updated to w + 1

2
(1 − R/d) (ynxn − w), the radius is updated to 1

2
(R + d) and the slack is updated

to ξ2 = ξ2
[

1 − 1

2
(1 − R/d)

]2

+
[

1

2
(1 − R/d)

]2

. At any point the algorithm can be stopped and the current weight
vector retrieved. All of the above calculations can be kernelized.

It was shown in [2] that any streaming MEB algorithm that uses only D floats of storage obtains a lower bound of
(1+

√
2)/2 on the quality of solution. In order to do better in just a single pass, the algorithm must remember more.

We therefore extend this algorithm to simultaneously store K weight vectors (or “balls”). The space complexity of
this algorithm is K(D +1) floats and still makes only a single pass over the data. In the MEB setting, our algorithm
choses with each arriving datapoint (that is not already enclosed) how the current K + 1 balls (the K balls plus
the new data point) should be merged. This algorithm breaks the lower bound of (1 +

√
2)/2. We are currently

improving the upper bound.
We have implemeted a simplified version of the multiple weight vectors algorithm in which all but one ball have

zero radius. Even limited as such, this algorithm works quite well in practice, as shown by preliminary experiments
in Table1. Here, we compare our algorithm (we use a small value of K typically 6− 8) against a single pass of other
state-of-the-art SVM solvers [7, 8]. Our early results have been encouraging and we expect to report a full set of
experiments at the workshop.

We believe that the development of streaming algorithms for solving well-known learning models (such as SVM,
logistic regression, etc.) is an attractive alternative to approaches based on stochastic subgradient [7], which tend to
require multiple passes for convergence. We suggest streaming as an alternative to standard online learning methods,
which typically involve designing a new learning model and algorithm: we are simply taking existing models and
finding efficient stream algorithms to solve them.
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