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Assume we are given a training dataset contaidipgnput samples fot = 1...7T in some arbitrary
order. One quantity to evaluate or manipulate is the lila@ihof the dataset( X1, . .., Xr|0) given
some model. A popular method to recover a model of the datagefind the model that maximizes
the likelihood score. An additional standard assumptiostnumsupervised methods make when
given a dataset is that it is composed of independently iclht distributed samples. In other
words,p(X4,..., Xr|0) = Hthlp(XtW). Thisiid assumption can be inappropriate for many real
datasets. Consider instead that we first sampled a tree cirityeover 7' nodes. Then children
X; are sampled from their parents; ;) using conditional distributions(X;| X ), #) according

to this tree structure (as is the case in a single-parentyfamie). More formally, the structure we
are dealing with is an out-tree. This is as an acyclic graphith a set ofI" verticest’ and edge€
such that each nod&; has at most one parent nodg ;). Rooted out-trees are trees with directed
edges pointing away from a well-defined root. For instafige— X> «— A5 is an out-tree rooted
at X5. Conversely, rooted in-trees have all directed edges fritvaronodes point towards the root.
The previous 3-chain example is thus also an in-tree rodtes@de X;. Many directed trees are
neither in-trees nor out-trees. For instance, the fee~ X> — X3 — X, is a valid directed tree
but neither a rooted in-tree nor a rooted out-tree.

If we knew the latent out-tree structuethat generated ouf samples, the likelihood of the data
would factorize as a product of conditionals of each nodemits parent. However, in general, the
structure is unknown. Consider treating it as a random lkigiand using Bayes’ rule to obtain a
posterior distribution over tree structures as follows@@sing a uniform prior over out-trees):
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where thepartition functionZ = p(X)T7—! ensures the likelihood sums to unity. Recovering
Z involves summing(X|7) overT, the set of all out-treeq;. This is an unwieldy computation
since there ar@ 7! possible out-trees connectiffy observation vertices. Instead, we consider
breaking up the summation into all possible choices of tloe of the out-tree- = 1...7 and a
summation over the subsEt of all 772 out-trees rooted at node It is straightforward to show
that all subsets of out-trees with different roots are dgtiin other wordd™; NT'; = {} if ¢ # j.
Furthermore, their union forms the set of all out-trées: UJ_,T';. Thus, the partition functio&

is decomposable as the following sum:
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where we have used the property that the root has no pareat fiodefficiently recove we will
instead recover the individual components of the above sugnsodenoted asZ,. by making an
appeal to the directed variant of Kirchoffidatrix Tree Theoremnamely Tutte’sDirected Matrix
Tree TheoremThe directed matrix tree theorem does not quite sum oveliraitted trees. It sums
over asubsetrooted out-trees. To apply Tutte’s theorem we compute smagetrics weight matrix

of sizeT x T populated by all pairwise conditional probabilities aating to 5., = p(X.|X5).
Note that we will assumg,,, = 0 since there are no edges between a node and itself. The miatrix
allows us to rewriteZ,. as a product of edges jhinstead of a product of nodes:
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The out-tree Laplacian matrig is then obtained a@ diag(ﬁf) (3. Here, takel to be the ones
column vector and note that théag(¥) operator gives a diagonal matrix wieton its diagonal. Note
that the Laplaciar is not symmetric. The directed matrix tree theorem asshkesthe number
(or weight) of out-trees rooted at nodes Z, and is given by the matrix cofactdf)],. obtained
by deleting ther'th row andr’th column of the matrix@). The precise formula i, = |[Q], |.
Reinserting this formula into the above gives the totalipart function as:
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which is now efficient to evaluate. Interestinglf,is the sum of determinants of the minors of the
Laplacian. This is also known as anmanentIf 5 is symmetric, all terms in the summation above
are identical and the immanent simply becomes a determin‘ﬁnils is the case, for example, if
the conditional distributions of parent and child satisfieX ;| X)) = p(Xu)|X¢). In addition,

it is known that the log determinant of a symmetric Laplaaiaatrix is a concave function of the
edge-weights. In the asymmetric case, however, concavibst. A naive calculation of requires
O(T*) however it is possible to recovef in O(T2°) by using a singular value decomposition of
3. This is more efficient than enumerating@f —! out-trees to ensure a normalized likelihood. An
interesting property is that the partition functi@hforms a finitely exchangeabtedid or out-tree
dependent identically distributed likelihood as follows:
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Theorem 1 If the conditional dependence of a child node given a parederdegenerates into the
marginalp(X;| X)) — p(X¢) theotdidlikelihood simplifies into théd likelihood.

Proof 1 Work backwards by writing the likelihood as a product ovedesgiven parents, removing
dependence on parents and simplifying:
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A generalization ofid likelihood emerges by integrating over latent out-treacurre. To perform
unsupservised learning, we maximize tbislid likelihood over the parametetsthat govern the
conditional distribution of a child given its parent. Fora@xple, we considered parameterizing a
linear Gaussian conditional relationship. An Expectafiéeximization algorithm is straightforward
to derive and leads to efficient unsupervised learning. Bhigesian treatment of out-trees predicts
labels more accurately than support vector machines if éitee dbeys a tree structure such as in the
taxonomy datasets below which were introduced by Kemp @& NIPS 2003.
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Figure 1: Labeling error rates (averaged over tasks) forTees and SVMs.



