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Interest in deep networks has surged in the last couple of years since the discovery of efficient new techniques to train
them (Hinton, Osindero, & Teh, 2006; Bengio, Lamblin, Popovici, & Larochelle, 2007; Larochelle, Erhan, Courville,
Bergstra, & Bengio, 2007; Ranzato, Boureau, & LeCun, 2008). The principle underlying all these techniques is the use
of an unsupervised criterion to pretrain the layers of the network. While this seems to yield improved performance on
some datasets, the absence of discriminative criteria is troubling. Bengio et al. (2007) proposed a mixture of a generative
and a discriminative criterion which seemed promising; we present here another mixture of such criteria in the context
of classification which, besides improving overall performance, gives new insight on the existing Contrastive Divergence
training criterion used by Hinton et al. (2006).

Introduction
A Restricted Boltzmann Machine (RBM) with n hidden units is a parametric model of the joint distribution between hidden
variables hi and observed variables xj , of the form

P (x,h) ∝ eh
′Wx+b′x+c′h

with parameters θ = (W, b, c). We consider here the case of binary units. It is straightforward to show that P (x|h) =
∏

i P (xi|h) and P (xi = 1|h) = sigm(bi +
∑

j Wjihj), and P (h|x) has a similar form.
A Deep Belief Network (DBN) is a generative model where the top layer is an RBM and the lower layers form a sigmoid
belief network. After being trained as a generative model, the parameters of the DBN can be fine-tuned on a discriminative
task and eventually used as a standard feed-forward neural network.

Using Bhattacharyya distance to improve classification accuracy
The original training criterion for RBMs is to minimize the negative log-likelihood of the data:

L(θ) = −
1

N

N
∑

i=1

log Pθ(xi) (1)

where Pθ is the marginal distribution induced over the visible units by the RBM with parameters θ. Its gradient with
respect to θ is

∂L

∂θ
= −

1

N

∑

i

xisigm(Wxi + c)T + Ex,h[xh
T ] (2)

Since the expectation over x and h is intractable, the contrastive divergence algorithm (Hinton et al., 2006) replaces it by a
sample obtained by running an MCMC for a few steps. The idea behind the algorithm is to pull up the energy of points that
are close to the training points instead of pulling up the energy of all the points in the space, which would be too expensive.
The notion of closeness is defined by the RBM itself.
When computing the output for a test example, a feed-forward pass is performed through the network. The activations of
the layer k + 1 (denoted h) given the activations of the layer k (denoted x) are equal to

µj = sigm

(

∑

i

Wjixi + cj

)

= P (hj = 1|x) (3)



Since µ will be used on the next layer to perform the classification task, we want to minimize the probability of having x’s
of different classes generating the same h. To this end, we will add a discriminative term to this criterion to encourage x’s
belonging to different classes to generate different h’s:

LB(θ) = −
1

N

N
∑

i=1

log Pθ(xi) +
λ

K

∑

i

∑

j/C(xi)6=C(xj)

log

(

∑

h

√

P (h|xi)P (h|xj)

)

(4)

where C(x) is the class of the training sample x and K is the number of pairs of examples belonging to different classes.
The term

∑

h

√

P (h|xi)P (h|xj) is called the Bhattacharyya distance between the distributions P (h|xi) and
P (h|xj). Jebara and Kondor (2003) used a similar metric to derive new kernels for support vector machines.
Denoting F (x) the free energy of x, i.e.

P (x) =
exp[−F (x)]

∑

x0
exp[−F (x0)]

, (5)

we have

log

(

∑

h

√

P (h|xi)P (h|xj)

)

= −F

(

xi + xj

2

)

+
F (xi) + F (xj)

2
(6)

This new form gives a deeper insight on what the Bhattacharyya distance term actually does. It specifies that the energies
of two points belonging to different classes has to be lower than the energy of the point in between, thus creating an
“energy barrier” between classes. This defines an algorithm very similar to the contrastive divergence with the difference
that the point whose energy is pulled-up is chosen deterministically and data-driven instead of being stochastically chosen
and model driven.

Experiments
We performed experiments on the MNIST dataset with and without background images using the following protocol:

1. we trained an RBM using the LB cost for various values of λ

2. we computed the expected activations of the hidden layer for all the training samples and plugged them into an SVM

3. the hyperparameters (both of the RBM and of the SVM) have been selected using the classification error on a
validation set.

Since it was too computationally expensive to do the sum over all pairs of points of different classes, we only computed
it for the k nearest neighbours of every point with k = 3, 5, 20. In a real-world problem, finding the k nearest neighbors
would be too prohibitive and we would have to rely on an approximate method such as kd-trees.
Using the discriminative criterion helped the classification accuracy, though by a small margin. We believe a careful
selection of the pairs on which to maximize the Bhattacharyya distance could yield a larger improvement. We obtained poor
results using λ = +∞ (thus only considering the discriminative criterion). This suggests that the stochastic exploration
of the space performed by contrastive divergence is useful. An explanation for this is that the discriminative criterion only
tries to minimize the energy of training points relative to their midpoint without preventing other points of the space to
have very low energies.
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