
Dimensionality Reduction by Minimum Margin

Sandwich

Sreangsu Acharyya Joydeep Ghosh

Abstract

The nonlinear dimensionality reduction problem is posed as finding
two parallel hyperplanes in a feature space that sandwiches the mapped
data points with the minimum possible thickness. The mapping to the
feature space is obtained implicitly through a kernel function. The for-
mulation is noise resistant and encourages sparsity in the sense only a
few ”supporting” data points participate in defining the hyperplane, the
cost function leads to a quadratic program optimizing a convex function
over an union of convex sets. Two alternative formulations are investi-
gated, one where certain 0, 1 “selection” variables select the constraining
convex sets. With the selection variables held fixed the problem reduces
to a convex Quadratic Program with closed form updates. The selection
variables are optimized by mean field annealing and soft-assign. In the al-
ternative formulation the problem is posed as a Quadratically constrained
QP. The optimization problem is reduced to a sequence of one class svm
problems using Legendre transformation and solving for the saddle point.
Simple generalization error bounds on the probability that a future point
drawn iid lands outside of the sandwich is also provided using compression
bounds.

given a set of points xi ∈ Rn, we seek projections with low reconstruc-
tion error, where the error is defined in a minimax sense. We invoke the
margin paradigm of Large Margin methods and define the margin for this
unsupervised learning task to be the normal distance between two hyper-
planes parallel to a subspace, such that all the data points are sandwiched
between them. We search for a solution where the margin is the least, or
in other words search for a supspace such that the maximum projection
distance is minimized.

For an arbitrary lower dimensional subspace given by the matrix W
formed by the basis vectors wi the cost function can be formulated as:

MinW Maxi ||xi − x̂i||2 s.t. x̂i = WW †xi and
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