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Introduction

We address the problem of sparse Bayesian factor regression from high-dimensional gene-expression data
where the number and inter-relationship of factors is not known apriori. We take a non-parametric Bayesian
approach based on a variant of the Indian Buffet Process [1]. This leads to an interpretable model for
gene-pathway relationships, a simple inference procedure, and allows us to consider more complex models
for factor modeling than is allowed by model-selection based approaches [2]. Our motivation is that non-
parametric approaches yield models that let us look at structurally rich problems in a coherent manner.
In particular, the non-parametric approach allows us to directly consider variable selection and hierarchical
factors in a unified model. Variable selection models the fact that most genes are not involved in any pathway
for a given dataset, and leads to computational benefits. The non-parametric nature of our model allows us
to impose a hierarchy over the discovered factors which helps in explaining the correlations within sets of
factors having similar functions. Finally, we couple the regression task within the factor modeling framework
itself, instead of considering them as separate tasks [3].

Bayesian Factor Regression Models

In gene-expression studies, we model the relationships between high-dimensional (P ≫ 1000) gene-expression
data and a small number (k ≈ 10) of underlying subpathways (latent factors). The gene versus factor
relationship is inherently sparse: each gene affects and is affected by a very small number of latent factors.
We use Bayesian factor-regression: couple a factor analysis with regression modeling. For the factor analysis
aspect, we have gene expression data having N samples with P variables (genes) each (P ≫ N) in a matrix
X of size P × N . We model the data as: X = AF + Ψ, where A is a sparse P × k factor-loading matrix
(capturing the relationship between genes and the latent factors), F is a k ×N latent factor matrix relating
factors to samples, and Ψ is idiosyncratic noise. The predictive modeling for regression can be done in terms
of the latent factors: y = θ′F + ε, where θ is a k × 1 vector of regression parameters and ε is noise. The
latent factor regression yields considerable statistical and computational saving since the dimensionality (k)
is significantly smaller than that of the original data (P ). The predictive modeling can be coupled with the
factor analysis framework leading to a unified sparse regression model for the predictors X and the responses
variables y. It is also straightforward to extend the model for multivariate response variables [2].

A common approach to the factor analysis problem is to place a sparse prior on A [3]. However, typically,
the assumption is that the number of factors (k) is known in advance, which is often not the case. The existing
approaches to model selection are based on reversible jump MCMC methods or evolutionary stochastic model
search based methods which may take too long to converge [2].

Non-parametric Bayesian Factor Regression

We take a different approach to sparse factor regression which is based on the Indian Buffet Process (IBP)
[1]. Although IBP has been applied to non-parametric factor analysis in the past [1], the standard IBP
formulation places IBP prior on the factor matrix (F) associating samples (i.e., set of data points) with
factors. However, this assumption is inappropriate in the gene-expression context: we are interested in
associations between genes (i.e., variables) and factors. Thus, it is more appropriate to place the IBP prior
on the factor loading matrix (A) instead. In the IBP culinary analogy, the customers are genes which are
selecting dishes (factors). Note, however, that since A and F are related with each other via the number of
factors k, modeling A non-parametrically allows our model to also have an unbounded number of factors,
essentially leading to an alternative non-parametric latent factor model.
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X = (Z ⊙ V)F + Ψ

Z ∼ IBP (α); α ∼ Gamm(a, b)
V ∼ Nor(0, σv); σv ∼ Gamm(e, f)
F ∼ Nor(0, I)
Ψ ∼ diag(Ψ1, .., ΨP )
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In the above formulation, the factor loading matrix A is a convolution of a sparse binary matrix (Z) and
Gaussian vectors (V), similar to the standard approaches taken in sparse modeling. Z is drawn from an
IBP prior. IBP follows a sequential generative process and we use the standard Gibbs sampler for inference.
However, for non-conjugate models, it may also be beneficial to use the stick-breaking construction [4] of
IBP, which additionally addresses the problem of slow-mixing. The rightmost figure above shows the result
of sampling for a run of 500 iterations for a gene-expression dataset having 25 samples of 226 genes each.
The number of factors discovered is 7 which is close to the ground truth. Our approach gave a mean squared
reconstruction error of about 0.32 on this data as compared to BFRM [3] for which it is about 0.36 and it
shows that our approach indeed does quite well. As in [2], combining predictive modeling to the model is
again straightforward. This is done by simply extending the model by prepending the response variables
(yi) to the gene-expression vectors (xi). The MCMC analysis in this case can be extended by treating yis
as missing variables to be imputed.

Variable Selection and Hierarchical Factor Modeling

Typical gene-expression datasets are of the order of several thousand or tens of thousands of genes. However,
in most datasets, many genes will not be associated with any pathway (factor). In the standard formulation,
these are accounted for only by the idiosyncratic noise term, which is not an appropriate model. We propose
a variable selection prior in form of a sparse P -dimensional vector T (each entry of T corresponds to a row
in Z), placing a beta prior (Beta(1, a)) over T. Following the IBP culinary analogy, this corresponds to a
customer entering and immediately deciding not to eat, before looking at any dishes. Typically, we set a to
be a constant (10 or 100) or give it a prior and sample over a. The Gibbs sampler samples for a particular
row in Z only if the corresponding entry in T is sampled as 1, otherwise the entire row of Z is set as zero.
Due to the large size of these datasets, sampling the Z matrix (and the associated V matrix) can be quite
expensive. Variable selection can yield considerable computation savings.

Another limitation of the standard factor analysis models comes from the fact that they assume a priori
independent latent factors. This fails to capture the correlations that may exists among gene pathways.
Such correlations are relevant, especially in gene-expression contexts, since factors with similar tasks tend to
regulate related genes. In such contexts, the assumption that gene pathways (the factors) are independent
is no longer true. Some pathways are involved in transcription, some in synthesis, some in signaling, etc. In
light of this, we wish to model a hierarchical latent structure on factors. To do so, we employ the coalescent
as a hierarchical prior [5]. The “leaves” of the coalescent tree are precisely the rows in our factor matrix.
The coalescent is an attractive choice because it is also non-parametric with a well-defined predictive density,
allowing for simple extensions to our Gibbs sampling procedure. Our initial results have been encouraging
and we expect to report compelling results at the workshop.
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