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Abstract

Recent theoretical studies indicate that deep architectures [4, 2] are needed to efficiently model complex distri-
butions and to achieve better generalization performance on challenging recognition tasks. The belief that additional
levels of functional composition will yield increased representational and modeling power is not new [13, 9, 16]. In
practice, learning in deep architectures had proven to be difficult. However, this situation recently changed with the
successful approaches of [7, 10, 1, 14, 12] for training Deep Belief Networks and stacked autoencoders (deep neural
networks). What these works have in common is several principles for effectively learning deep architectures. In our
work we attempt to generalize these learning principles to deep architectures in which each level is represented by an
ensemble of decision trees. “Deep woods” are what we call the resulting stacked ensembles of trees. We introduce
two new algorithms for learning of deep woods: one is inspired by the deterministic autoencoders which have been
used to build deep neural networks, and one is a generalization of Restricted Boltzmann Machines, which have been
used to build Deep Belief Networks.

Introduction
Theoretical results suggest that, in order to learn the kind of complicated functions that can represent high-level
abstractions (e.g. for vision, language, and other AI-level tasks), one needs deep architectures [7, 4, 2]. Deep ar-
chitectures are composed of multiple levels of non-linear operations, such as neural nets with many hidden layers
or complicated propositional formulae re-using many sub-formulae. The depth of an architecture is the depth of the
circuit that represents this function [2, 4].
Searching the parameter space of deep architectures is a difficult optimization task, but recently proposed learning
algorithms—such as those for Deep Belief Networks [7]—can successfully train deep architectures. The resulting
deep machines can beat the shallow state-of-the-art in certain areas. A principle that has been found to help optimizing
deep networks is based on the use of unsupervised learning to initialize each layer in the network. Each layer learns a
representation of its input that serves as input for the next layer, and training progresses by greedily [7]. The principle
of training a deep architecture by greedy layer-wise unsupervised training has been shown to be successful for deep
connectionist architectures [7, 10, 1, 14, 12]. Does this deep training principle apply to deep architectures comprising
other kinds of primitive units?
We attempt to exploit this principle to develop new deep architectures based on deterministic or stochastic decision
trees. Decision trees are local estimators in the sense of relying on a partition of the input space and using separate
parameters for each region [3]. For this reason, single decision trees need at least as many training examples as there
are variations of interest in the target function, and they cannot generalize to new variations not covered in the training
set. On the other hand, ensembles of trees (like boosted trees [6], and forests [11, 5]) are more powerful than a
single tree. They add a level to the architecture, which allows the model to discriminate among a number of regions
exponential in the number of parameters [3]. By analogy, clustering forms a single partition and generally involves a
loss of information about the input, whereas a multi-clustering provides a set of separate partitions of the input space.
If we identify for an input example in which region of each partition it belongs, we have a description of the input
pattern which might be very rich, possibly not losing any information. The tuple of symbols specifying to which region
of each partition the input belongs can be seen as a transformation of the input into a distributed representation [8],
where the statistical structure of the data and the factors of variation in it could be disentangled. This corresponds to
the kind of partition of the input space that an ensemble of trees can represent: the distributed representation output at



each level transforms the input into a binary code representing the leaves (and perhaps internal nodes) in the ensemble
into which the input falls, with one bit per node.
Motivated by the above considerations, we propose two approaches to train a deep architecture where each level is an
ensemble of trees. The first approach is analogous to autoencoders, which compute a deterministic reconstruction and
minimize a reconstruction error, while the second approach is analogous to Restricted Boltzmann Machines (RBMs),
which build a generative model of the input through a discrete hidden variable. In both cases, a global training criterion
is defined which pushes the different trees in the ensemble to take on complementary roles in explaining the input.
Consider a binary split ck(x) for decision node k of the ensemble. ck can be a deterministic or stochastic function of
the input pattern x. A node or leaf j, or equivalently a region associated with one of the decision trees, is defined by
a conjunction of splits, i.e. a product of binary decisions of the form ck(x) or 1− ck(x). We denote hj(x) the binary
(deterministic or stochastic) variable which indicates the presence of x in the corresponding region (or node of a tree)
j. Note that whereas the ck’s can take arbitrary patterns of binary values, the tree structure imposes some constraints
on the values of the hj’s, such that hj can be 1 only if its parent (if any) has the appropriate binary value (depending
on whether hj is child 0 or child 1 of its parent). Let code(j)k be a binary value that specifies for node j whether
node k (which should be an ancestor of j in j’s tree) should be 1 or 0 for node j to be allowed to be non-zero, and let
ancestors(j) be the set of ancestors of j (i.e. nodes whose value constrains the value of hj).
AutoEncoding Woods
In autoencoding forests, we associate with each leaf a reconstruction vector rj , and we optimize both the reconstruction
patterns and the node decision conditions so as to minimize a reconstruction error. The reconstruction for the whole
forest is obtained by summing the reconstructions from each tree:

r(x) =
∑

i

∑
j∈leaves(i)

rj

∏
k∈ancestors(j)

ck(x)code(j)k(1− ck(x))1−code(j)k

For binary or binomial-like inputs we use as reconstruction error the cross-entropy between sigmoid(r(x)) and the
actual input pattern x. For continuous-valued inputs we use the squared error ||r(x)− x||2. In both cases these can be
seen as − log P (x|r(x)) under some model.
Adding decision nodes and trees is achieved using a construction heuristic that chooses splits greedily to maximize the
gradient of the objective, similarly to a method used for supervised decision trees [15]. These heuristics are based on
the traditional axis-aligned decision nodes, where only one of the input variables is used for each particular decision
function ck(x), i.e. ck(x) = 1xd(k)<θk

, where d(k) selects an input dimension for decision k.
RBM Woods
We construct a joint distribution for h and the input vector x through an energy function similar to the one proposed
for RBMs:

Eλ(x, h) = −b′x− c′h− h′Wx + λ
∑

i

∑
j∈leaves(i)

hj(1−
∏

k∈ancestors(j)

h
code(j)k

k (1− hk)1−code(j)k)

As λ → ∞ the λ-weighted sum just imposes the constraint that only one leaf per tree is 1 and that it can be 1
only if its ancestors have the appropriate value. One can then decompose P (h|x) as a product

∏
i P (hi|x) where hi

only contains the bits for tree i, and each P (hi|x) can be expanded according to the tree structure as a product of
conditionals of the form P (hj |{hk : k ∈ ancestors(j)}, x). Each of these conditionals turn out to be of the usual
affine-sigmoid form sigmoid(bj+W ′

jx). We also obtain that P (hj |x) has the form of a product of sigmoid(bk+W ′
kx)

or (1 − sigmoid(bk + W ′
kx)) with k an ancestor decision of j, which is a stochastic version of a decision tree with

decisions ck ∼ sigmoid(bk + W ′
kx) on the nodes. We can therefore easily sample from P (h|x), as well as compute

these probabilities for any given h vector, at a cost proportional to the sum of the depths of the trees. P (x|h) does
not depend on the tree constraints and is computed as usual in RBMs. The contrastive divergence algorithm or other
approximation of the log-likelihood gradient can therefore be applied to this particular model. All the parameters of
the RBM Woods can be trained by stochastic gradient descent, given a particular tree structure; unlike with the above
autoencoding forest, stacked RBM Woods can be fine-tuned globally just like Deep Belief Networks, giving rise to
Stochastic Deep Woods. Note that when a tree is a chain we obtain a form of shunting inhibition as the resulting
“activation function” for the deepest leaf.
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