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Previous work has shown that the difficulties in learning deep generative or discriminative models can be overcome by
an initial unsupervised learning step that maps inputs to useful intermediate representations (Hinton et al., 2006; Hinton
& Salakhutdinov, 2006; Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007; Lee et al., 2008). While
unsupervised learning of a mapping that produces “good” intermediate representations of the input pattern seems to be
key, little is understood regarding what constitutes “good” representations for initializing deep architectures, or what
criteria may guide learning such representations. Here we hypothesize and investigate a specific criterion: robustness
to partial destruction of the input. In Bengio et al. (2007), basic autoencoders have been used as a building block
to initialize deep networks. Here we propose to use instead denoising autoencoders, which are trained to reconstruct
a clean “repaired” input from a corrupted, partially destroyed one (see figure 1 for a schematic representation of the
process). Such denoising autoencoders are stacked and trained to initialize a deep neural network, which is then
globally fine tuned using a supervised criterion. The algorithm can be motivated from a manifold learning perspective
an information theoretic perspective or a generative model perspective. Experiments clearly show the surprising
advantage of corrupting the input of autoencoders on a pattern classification benchmark suite (see table 1 and figure 2).
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Figure 1: An example x is corrupted to x. The autoencoder then maps it to y and attempts to reconstruct x.

Table 1: Comparison of stacked denoising autoencoders (SdA-3) with SVMs and Deep Belief Nets Test error rate
on all considered classification problems is reported together with a 95% confidence interval. Best performer is in bold,
as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or equivalent
to the best other model on all problems except bg-rand. For SAA-3, we also indicate the fraction v of destroyed input
components, as chosen by proper model selection. Note that SAA-3 is equivalent to SAA-3 with v = 0%.

Dataset | SVM,,; | SVM,, DBN-1 | SAA-3|  DBN-3 SdA-3 (v) |
basic 3.03£0.15 | 3.69£0.17 | 3.94£0.17 | 3.46£0.16 | 3.11£0.15 | 2.80+0.14 (10%)
rot 11.11£0.28 | 15.4240.32 | 14.69£0.31 | 10.30+0.27 | 10.30+0.27 | 10.29+0.27 (10%)
bg-rand | 14.58+0.31 | 16.62+£0.33 | 9.80+0.26 | 11.28+0.28 | 6.73+0.22 | 10.38+0.27 (40%)
bg-img 22.61+0.37 [ 24.01£0.37 | 16.15£0.32 | 23.00+0.37 | 16.31+0.32 | 16.68+0.33 (25%)
rot-bg-img | 55.18+0.44 | 56.41+0.43 | 52.2140.44 [ 51.93+£0.44 [ 47.39+0.44 | 44.4940.44 (25%)
rect 2154013 | 2.15£0.13 | 4.71£0.19 | 2.41£0.13 | 2.60£0.14 | 1.99£0.12 (10%)
rect-img | 24.04+0.37 [ 24.05+0.37 | 23.69+0.37 [ 24.05+£0.37 | 22.5040.37 | 21.5940.36 (25%)
convex 19.13£0.34 [ 19.8240.35 [ 19.9240.35 | 18.414+0.34 | 18.63+0.34 | 19.06-0.34 (10%)




(a) No destroyed inputs (b) 25% destruction (c) 50% destruction
(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 2: Filters obtained after training the first denoising autoencoder. (a-c) show some of the filters obtained
after training a denoising autoencoder on MNIST samples, with increasing destruction levels v. The filters at the same
position in the three images are related only by the fact that the autoencoders were started from the same random
initialization point. (d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction
levels. As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey
patches). As we increase the noise level, denoising training forces the filters to differentiate more, and capture more
distinctive features. Higher noise levels tend to induce less local filters, as expected. One can distinguish different
kinds of filters, from local blob detectors, to stroke detectors, and some full character detectors at the higher noise
levels.
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