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Neural network research in machine learning grew out of theories from computational neuroscience from
the 1960s. While the class of affine-sigmoidal feature extractors has been studied extensively since the
mid 1980s, the computational neuroscience community has moved on to new models that are qualitatively
different and more descriptive, without being substantially more computationally expensive. This paper
brings a particular model proposed in (Rust et al., 2005) for low level neurons in the macaque visual
system into a machine-learning context: we evaluate their model as an activation function (feature-extractor)
for single-layer neural networks that perform image classification. The function we evaluate is somewhat
similar to the higher-order processing units discussed in (Minsky & Papert, 1969) and the Sigma-Pi units
described in (Rumelhart et al., 1986), but avoids the computational difficulties associated with these models
by representing the second-order interaction weights with a low-rank positive semi-definite matrix, and
avoids the learning difficulties associated with these models by using a gentler non-linearity than the logistic
sigmoid. Remarkably good comparative results are obtained on three image classification tasks including
1.4% error on MNIST using a single-layer network. These results suggest that a single hidden layer neural
network equipped with this neuron model can capture important patterns in the data that escape standard
models such as sigmoid neural networks and support vector machines based on gaussian and polynomial
kernels.

Recently, Rust et al. (2005) describe experiments in which they test for linear and non-linear neuron
responses among the simple and complex cells in the early vision system of macaque monkeys. They find
that only the simplest cells respond according to a formula like sigm(wx+b), while their model (eq.1) makes
better predictions by incorporating separate non-linear terms for the excitement (E) and shunting inhibition
(S) experienced by a cell.

response = α +
βEζ − δSζ

1 + γEζ + εSζ
, E =

√
max(0, w′x)2 + x′V ′V x, S =

√
x′U ′Ux (1)

One key aspect of this formula is the modeling of pairwise interactions between inputs. The näıve
extension of a normal neural network activation function to include second-order interactions gives something
like the Sigma-Pi unit in equation 2.

hhpu2,i(x) = act(bi + w′
ix + x′Wix) (2)

which is parametrized by scalar bi, vector wi ∈ IRd, and matrix Wi ∈ IRd×d.
Unfortunately this model is not practical for treating a high-dimensional input because the number of

parameters is quadratic in the input dimensionality. To escape this problem, the activation function of our
quadratic sigmoid network (eq. 3) approximates the large matrix Wi with the difference of two low-rank
(rank K) positive semi-definite matrices. For the i-th feature, we have hquad,i(x).

hquad,i(x) = act(bi + w′
ix + x′V ′

i Vix− x′U ′
iUix) (3)

hratio,i(x) =
Ei(x)

1 + Ei(x)
(4)

hshunt,i(x) =
Ei(x)− Si(x)

1 + Ei(x) + Si(x)
(5)

Ei(x) =
√

x′V ′
i Vix + log[1 + exp(wi · x)]2 (6)

Si(x) =
√

x′U ′
iUix (7)

b ∈ IR;x,w ∈ IRd;Vi, Ui ∈ IRK×d (8)

Drawing inspiration from the model of neuron response proposed by Heeger (Heeger, 1993; Carandini &
Heeger, 1994), we implemented ratio networks out of activation functions hratio. Based on the neuron re-
sponse model proposed in Rust et al. (2005) (which is an extension of the Heeger model) we also implemented
shunting networks out of the activation functions hshunt.

Results

Since the models under investigation were derived from experimentally justified descriptions of low-level
neurons in the mammalian visual system, we tested them on simple supervised visual tasks. We generated a
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dataset of regular shapes at 32x32 resolution (ShapeSet1 includes circles, squares, and equilateral triangles),
and of stretched ones (ShapeSet2 includes ellipses, rectangles and triangles). We made our features into
classification models by linearly classifying a layer of features. As is common practice with neural networks,
we used backpropagation to minimize the average cross-entopy between the model’s prediction and the target
distribution over classes.

Best Shapeset1 Model Shapeset1 Shapeset2 MNIST
Family Units K Valid Test Valid Test Test
SV M - - 29.6 29.3± 1. 42.2 44± 2 1.4
sigm 200 - 13.5 14.0± 1. 36.6 36± 1 1.9
sigm2 200 ×2 - 6.8 7.2± .8 24.0 24± 1 2.4
sigm3 200 ×3 - 5.4 5.9± .7 22.3 22± 1
quad 20 ×4 6.3 7.4± .8 ? ? 1.9
ratio 40 ×8 2.1 2.4 ±.4 14.3 16 ± 1 1.4
shunt 40 ×16 2.9 3.2 ±.5 24.7 26 ± 1 1.5

Shapeset 1

Shapeset 2

The table shows the performance our models alongside normal one-layer (sigm), two-layer (sigm2), three-
layer (sigm3) neural networks and SVMs with gaussian kernel (found to be better than polynomial). All
the models involving quadratic interactions achieved good results with relatively few hidden units (20,40)
compared with the best conventional neural networks (200, 500), indicating that quadratic interactions
are useful features for generalization. Contrast: the best-performing SVM model kept over 90% of the
training set as support vectors. We have also run some experiments on MNIST; the best ratio network
scored a respectable 1.4% error, the shunting network a slightly poorer 1.5% error and the best quadratic
network 1.9%. Surprisingly, the ratio model outperformed all other types on all datasets, suggesting that
the combination of quadratic interactions with its activation function is good for both optimization and
generalization.

While these results are encouraging, we are working to improve them by well-known techniques for
neural network optimization. For example, convolutional neural networks have often demonstrated superior
image classification performance (Simard et al., 2003); the quadratic and linear components of the ratio and
shunting models could be arranged as convolutions too. For another example, the more recent technique
of greedy layerwise unsupervised learning to initialize deep networks (Hinton et al., 2006; Bengio et al.,
2007) seems to help with generalization if not optimization too. A more thorough empirical or theoretical
evaluation of what kinds of features these functions can extract is also ongoing research.
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