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Since Deep Belief Networks (DBN) have been introduced by Hinton, Osindero, and Teh (2006), we have started to wonder
what their true modeling power was. Le Roux and Bengio (2008) attempted to give some insight on the relative repre-
sentational powers of DBNs and Restricted Boltzmann Machines, their building blocks, while leaving some questions
open. Sutskever and Hinton (2008) partially answered one of these questions by proving that DBNs with 2n+1 layers
composed of n + 1 units each were universal generative models on the vectors of n bits. This paper improves this result
by proving the same property for DBNs with 2

n

n
layers of n units each. We also prove that Gaussian DBNs are universal

generative models of distributions on R
n and that deep sigmoid networks with layers of size n can model any function

from {0, 1}n to {0, 1}k.

Introduction
Deep models are receiving increased attention in the community (Lee, Ekanadham, & Ng, 2008; Salakhutdinov & Hinton,
2008; Ranzato, Boureau, & LeCun, 2008), but the motivation behind them remains obscure; Bengio and Le Cun (2007)
point to results in computational theory suggesting the use of deep architectures and Bengio (2007) proposes an explanation
of what happens in the upper layers of a deep network.

Background on RBMs and DBNs
An RBM with n hidden units is a parametric model of the joint distribution between hidden variables hi and observed
variables xj , of the form

P (x,h) ∝ eh
′Wx+b′x+c′

h

with parameters θ = (W, b, c). We consider here the case of binary units. It is straightforward to show that P (x|h) =∏
i P (xi|h) and P (xi = 1|h) = sigm(bi +

∑
j Wjihj), and P (h|x) has a similar form. A DBN with i layers models the

joint distribution between observed variables xj and i hidden layers h
k made of binary units h

k
l (here all binary variables),

as follows:
P (x,h1,h2, . . . ,hi) = P (x|h1)P (h1|h2) . . . P (hi−2|hi−1)P (hi−1,hi)

Denoting x = h
0, P (hk|hk+1) has the form P (hk|hk+1) =

∏
i P (hk

i |h
k+1) and P (hk

i = 1|hk+1) = sigm(bi +
∑

j W k
jkh

k+1

j ), and P (hi−1,hi) is a RBM.

DBNs are Compact Universal Approximators
Sutskever and Hinton (2008) provided a proof of the universal approximation property of Deep Belief Networks using
2n+1 layers of n+1 bits each. They thus gave partial answers to the open questions asked by Le Roux and Bengio (2008):

Let Rn
i be a Deep Belief Network with i + 1 layers, each of them composed of n units and Dn

i be the set of
distributions one can obtain with Rn

i .

• do we have Dn
i ⊂ Dn

i+1?
• what is Dn

∞
?

Their proof used a switch, placed at every layer, which would change an arbitrary vector x0 into another arbitrary vector
x1 with the appropriate probability to cover the whole set of vectors of n bits. Using a similar idea, we were able to prove
the following theorem:



Theorem 1. Let n be an arbitrary positive integer and let k = blog2 nc. Then it is possible to model any distribution over
n bits with a DBN composed of 2n−k + 1 layers of n units.
Proof sketch. Let x0 be an arbitrary vector over n bits. Then, for all k in {1, . . . , n} and all p in [0, 1], there exists a
sigmoid belief network composed of two layers h and v of size n such that:

• if x0 is clamped in h, v is equal to x0, except for the k-th bit which is flipped with probability p

• if x 6= x0 is clamped in h, v is equal to x with probability 1.
We will therefore build a DBN with 2n + 1 layers of n bits, such that, at every layer, a particular vector is potentially
transformed into another vector which differs by one bit. Using a Gray code, we can construct a sequence of vectors
differing by one bit to cover the set of sequences of n bits, thus achieving the universal approximation property of DBNs.
Since a Gray code only changes one bit at a time, we can split the set of sequences into n subsequences of almost equal
length, each of them being a Gray code, such that no two subsequences change the same bit at the same time. This divides
the number of layers needed by n (approximately).

The network presented there has a total number of parameters equal to n2n, similar to the universal approximator RBM
first presented by Freund and Haussler (1994). Even though there are only 2n different vectors, thus raising the possibility
of using only as many parameters, storing the address of every vector takes n bits. It is therefore reasonable to think that
the network achieved is of the same order of magnitude as the most compact network.
Using a similar construction, we can prove another theorem:
Theorem 2. Let n and k be two arbitrary positive integers. A DBN with 2n + 2k layers of n units can model any function
from {0, 1}n to {0, 1}k.
Proof sketch. At every layer, one can arbitrarily change an arbitrary vector into another arbitrary vector while leaving the
other unchanged. The idea is thus to move all the elements of one class to the same position and to do so for every class.
Once we are reduced to as many points as the number of classes, we move them so that k hyperplanes can separate them
as needed.

Finally, we can also prove the following general approximation property:
Theorem 3. Let n be an arbitrary positive integer. Then it is possible to approximate arbitrarily well any distribution over
R

n with a DBN composed of 2 layers whose number of units is not restricted.
Proof sketch. Since any distribution can be approximated arbitrarily well with a mixture of Gaussians, we create a DBN
with as many hidden units as the number of Gaussians, their associated weights being the centers of the Gaussians. The
second layer ensures that the hidden units are mutually exclusive, thus avoiding to create unwanted extra components in
the mixture.

References
Bengio, Y. (2007). Learning deep architectures for AI. Tech. rep. 1312, Université de Montréal, dept. IRO.
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