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The task of dimensionality reduction for regression (DRR) is to find a low dimensional representation z € R? of the
input covariates x € RP, with ¢ < p, for regressing the output y € R%. DRR can be beneficial for visualization of
high dimensional data, efficient regressor design with a reduced input dimension, but also when eliminating noise
in data x through uncovering the essential information z for predicting y. However, while dimensionality reduction
methods are common in many machine learning tasks (discriminant analysis, graph embedding, metric learning,
principal subspace methods) their use in regression settings has not been widespread.

The crucial notion related to DRR is the sufficiency in dimension reduction (SDR, [1, 2, 3]), which states that one
has to find the linear subspace bases B = [by,...,by| with b; € RP, (in the nonlinear case, B = {b1(),...,bg()},
where b;(+) is a nonlinear basis function) such that y | x | BTx. As this condition implies that the conditional
distribution of y given x equals to that of y given z = BT x, the dimension reduction entails no loss of information
for the purpose of regression. The minimal subspace with this property is called the central subspace'.

A number of methods originating in the statistics community have tackled the task of recovering the central space.
The kernel dimension reduction (KDR) [2] and the manifold KDR [4] directly reduces the task of imposing conditional
independence to the optimization problem that minimizes the conditional covariance operator in RKHS (reproducing
kernel Hilbert space). However, the manifold KDR introduces a tight coupling between the central space and
the separately learned input manifold, which restricts its applicability to transductive settings. Moreover, both
methods introduce non-convex objectives, potentially suffering from existence of local minima. An alternative inverse
regression (IR) approach [3, 5] exploits the fact that the inverse regression E[x|y] can lie on the subspace spanned
by B, leading to the possibility of estimating B from the slice-driven covariance estimates of the IR. While KSIR [5]
overcomes the linearity of SIR [3] its performance may still suffer from the need for target y slicing, which can be
unreliable for high-dimensional targets.

In this work we propose the Covariance Operator based Inverse Regression (COIR), a novel nonlinear method for
DRR that jointly exploits the kernel Gram matrices of both input and output. COIR estimates the variance of the
inverse regression under the IR framework and, at the same time, avoids the slicing by the effective use of covariance
operators in RKHS. As a result the central subspace effectively arises from the solution of the eigenequation
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s z(z) = nk(z) 'Ky a.

While this approach generalizes that of KSIR (a special case of COIR) it also allows a closed-form solution to
the nonlinear central subspace estimation problem. We demonstrate the benefits of the proposed method on two
regression problems involving high-dimensional and noisy data.

A. Estimation of Head Pose

From the face dataset (http://isomap.stanford.edu/datasets.html), we consider the task of predicting the 2D pose
(horizontal and vertical rotation angles) from (64 x 64) image. We show 2D central subspaces estimated by COIR
and KSIR in Fig. 1. COIR lays out the data almost linearly along the output values with good generalization. In
KSIR, however, the data points are often mixed significantly (e.g., the red points intermingled with the green points).

B. Hand-written Digit Image Denoising

We devise an image denoising experiment with the USPS hand-written digit images. By adding highly non-iid noise,
random scratch lines with varying thickness and orientation, on the normalized (16 x 16) digit images, we consider
the task of predicting the original unscratched image (output y) from the scratched version (input x). The test
RMS errors using NN and Gaussian Process regressors learned with the dimension-reduced input data, and selected
denoised test images by the NN regression are depicted in Fig. 2. We see that COIR is robust to noise with improved
prediction accuracy compared to the regression based on the image input itself.

1 Although the subspace is usually meant for a linear case, however, we abuse it referring to both linear and nonlinear cases.
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(a) COIR; L/R (b) COIR; U/D (c) COIR; Face (d) KSIR; L/R (e) KSIR; U/D (f) KSIR; Face

Figure 1: 2D central subspaces of face images. The points are colored by the true Left /Right pose angles in (a)/(d),
Up/Down in (b)/(e), and (c)/(f) shows the face images superimposed. The test points are depicted in black circles.
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’ Input Space ‘ COIR ‘ KSIR ‘ Image x H Input Space ‘ COIR ‘ KSIR ‘ Image x ‘
| NN Regression | 8.5334 | 11.4909 | 9.3605 || GP Regression | 8.1454 | 10.7259 [ 9.1036 |

Figure 2: Denoising USPS scratched digit images. Top: Each 5-tuple is composed of, from left to right, (1%) the
noise-free test image, (2"?) randomly scratched image, (3"¢) denoised by NN on COIR, (4**) NN on KSIR, and (5")
NN on the scratched image x itself. Bottom: Test (RMS) errors using NN and Gaussian Process regressors.
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