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Feature selection methods generally try to select the minimal set of features needed to
give good predictive accuracy in a model, for example by minimizing training error plus a
penalty on either the number of features (e.g., using AIC, BIC, RIC) or the L1 norm of the
features (LARS/Lasso), sometimes combined with an L2 penalty (elastic net). For many
problems in biology, however, it is more important to find as many features as possible that
are significantly predictive, rather than to select a minimal subset. Example applications
include selecting among SNPs in a genome wide assay to determine which mutations may
lead to increased danger of mental disease, or selecting genes of different yeast strains based
on their expression levels with the goal of identifying which genes effect the growth rate
of the yeasts. When the goal is science – e.g., finding which mutations ”cause” a given
disease – rather than prediction, the objective is not predictive accuracy, but to maximize
the number of true features identified while minimizing the number of false positives. More
precisely, we seek to maximize the number of features selected subject to a constraint on
the fraction of the features selected which are false positives – a sort of false discovery rate
(FDR).

Finding the maximal feature set poses some difficulties not present in predictive modeling,
since the problem is non-falsifiable; There is no way to determine based only on the train-
ing data if the correct causal features have been identified. If several features are highly
correlated in the training data, as neighboring SNPs on a chromosome are, one cannot tell
which of the correlated features is causal. (Note that we do not assume that future features
will maintain the same correlation structure as the training data.) Thus, to test a maximal
feature set selection method, one must use synthetic data where the features are known – or
do experiments where one changes features and observes the consequences. More formally,
We assume that data is generated by an unknown linear model y =

∑
wixi, where the sum

is over some subset of a much larger number of features X. If a true feature is perfectly cor-
related with a “false” feature, it is impossible to determine which of the two is the “causal”
or correct feature.

It is common practice in biology to find candidate causal features using a univariate screen,
in which the correlation of each feature with a response (the label) is calculated, features are
sorted from most to least correlated with the response, and those features whose correlation
is above some threshold are taken to significant, e.g. the probability of the correlation
arising by chance (the p-value) is compared to Bonferroni corrected threshold. A variety of
extensions ranging from the Simes procedure to more modern FDR step-up and step-down
procedures (e.g., Benjamini and Hochberg) give more power by sequentially adjusting the
threshold, but all still look at univariate correlations, where each x is compared individually
to y.

Such univariate screening methods can miss features because one feature can mask another.
Consider the case where y = c1x1 + c2x2 with c1 � c1 and x1 and x2 of the same size. In
this case, c1x1 effectively serves as noise to the univariate correlation of x2 with y, masking
x2 and making it difficult to discover, even though it would be shown to be significant if
a multivariate regression were done. Naive FDR methods test the hypothesis that each
individual feature is correlated with y, and so will miss masked features.
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Regression methods such as LARS and elastic net attempt to address the masking problem.
However, for the biological data sets we have looked at, the elastic net does relatively poorly
at identifying maximal ffeature sets in part because setting the strength of the L1 and L2

penalties to minimize the cross validation prediction error fails to to maximize the score of
interest: the number of features selected subject to a bound on the false discovery rate.

How might one, if computational power were no object, estimate the score, since it is
unmeasurable on real data sets? Assume, for simplicity, that we know the number, q, of
causal features. We could then compute all possible subsets of features of size q such that
all features in each subset are significant (in that set) after a Bonferroni correction and
none of the left out features are significant. Counting how often each feature is selected
gives a measure of how likely it is to be causal. We prove that if all the features of the
correct model are statistically significant, then the minimax estimate of the probabilities of
a variable being included are those given by this “subset counting” algorithm. One can,
of course pick a threshold on the probability to select features at a desired precision/recall
tradeoff.

Table 1 compares the performance of the above “subset counting” method with several
competing methods on a synthetic data set, and illustrates many interesting points. The
first column gives the L2 norm of the difference between the estimated probability of each
feature being in the model and the correct answer (1 or 0, respectively, if the feature is
nonzero or not). Almost all feature selection methods assume a feature is either in a model
(with probability one) or not, in which case the L2 norm is just the number of true positives
missed plus the number of false positives (i.e., the error rate). We also compare against
single pass screening, where all features that have a p-value for the correlation with y of
less than 0.5/p (where p is the number of features, the standard Bonferroni correction) are
selected. Multi-pass screening, where we repeatedly test for the correlation of features with
the residuals resulting from subtracting off the effect of the previously selected features,
shows how important masking can be, even when feature weights are all the same size. By
way of contrast, using the Simes procedure on univariate correlations gives only a small
benefit in finding more true features. Elastic net adds too many false features, in spite (or
because) of the regularization parameters being chosen by cross validation. Choosing the L1

and L2 penalties in elastic net to minimize prediction error leads to it adding far more false
positives than is desirable for minimizing error in selecting true features. An interesting
research question is how to modify the elastic net to do a better job of maximal feature
set selection. Zeroing small coefficient values (those less than 0.001) greatly improves the
performance of elastic net (to Error = 12.2), suggesting that significant improvements can
be made.
Error TP FP Train Err Test Err Method
0 10 0 0.00136 0.00338 true model

10 0 0 0.29046 0.02236 null model
190 10 190 0.00013 0.01992 full model
8.8 1.6 0.4 0.03893 0.02126 screening
4.7 8.0 2.7 0.00432 0.00919 multipass screening

11.1 2.2 3.3 0.03490 0.02296 Simes
9.6 3.4 4.4 0.01616 0.02093 subset counting

24.1 9.1 23.2 0.00149 0.01219 elastic net

Table 1. L2 Error in the probability of features being in model (Error), True positives (TP),
False positives (FP), Training error (Train Err), Testing error (Test Err) for each method. In all
methods, the confidence thresholds are set at 0.5 (before Bonferroni correction). 40 observations,
200 features, 10 true features, all with equal sized weights. Results are averaged over 100 randomly
generated data sets.

We believe that explicitly designing algorithms to search for maximal feature sets is impor-
tant and practical. We show that in spite of the nonidentifiability of the maximal feature set
problem, one can formally characterize the performance of some of these methods. We are
applying maximal feature selection to the large data sets that arise in genome wide associ-
ation (GWA) studies. On these large data sets (tens to hundreds of thousands of features),
neither LARS nor the subset regression and counting methods are feasible, but they can be
well approximated using multipass methods.
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