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Fisher discriminant analysis (FDA) is the canonical technique to project high-dimensional labeled
data onto a lower dimensional feature subspace [1]. This is accomplished by maximizing the Fisher
criterion over a projection vector~w:

JF (~w) =
~wT Sb ~w

~wT Sw ~w
, (1)

whereSb is the between-class scatter matrix, andSw is the average within-class scatter matrix. By
maximizing this quotient, FDA seeks to separate the different labeled classes as much as possible
while limiting the average spread within each class. FDA, as well as its kernelized generalization,
has previously been shown to be very useful in extracting features for classification [2].

However, the Fisher criterion is not directly related to the actual Bayes classification error. In par-
ticular, with heteroscedastic data where the within-class covariances of the data are quite different,
maximizing the Fisher criterion may be not optimal for separating the different classes [3]. Instead,
given two projected class distributions,p1(x) andp2(x), we should really optimize the projection
to minimize the classification error:

E =
1

2

∫
min[p1(x), p2(x)] dx. (2)

Unfortunately, this error integral is analytically intractable to compute. One alternative is to use
the following upper bound on the error:

E ≤ 1

2

∫
p1(x)αp2(x)1−α dx, (3)

Variationally optimizing this bound over the range0 ≤ α ≤ 1 results in a quantity known as the
Chernoff distance between two probability distributions [4]. We demonstrate how this distance can
be used for discriminant analysis, and show its improvement over conventional FDA.
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We also derive a complementary family of variational bounds on the error. These bounds arise by
considering the following inequality:

1− E = F =
1

2

∫
max[p1(x), p2(x)] dx (4)

≥ 1

2

∫
p1(x)

p1(x)

p1(x)+p2(x) p2(x)
p2(x)

p1(x)+p2(x) dx. (5)

The advantage of considering these lower bounds on themaxfunction is that the bounds are quite
tight and can easily be generalized to more than two classes. Then by using Jensen’s inequality,
this bound can be extended to the variational form:

F ≥ 1

2

1

2

∫
p1(x)

(
p1(x)

pm(x)

)β

dx +
1

2

∫
p2(x)

(
p2(x)

pm(x)

)β

dx

1/β

, (6)

wherepm(x) = 1
2
(p1(x) + p2(x)) and is valid for all0 ≤ β ≤ 1. In the limit thatβ → 0, we

then obtain a bound on classification error based upon mutual information. We then show how
these new variational bounds can be used for novel forms of discriminant analysis. Finally, we
discuss how these new algorithms may be generalized using kernels and how they can be used
with regularization techniques.
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