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Matrix-vector notation is the predominant idiom in which machine learning formu-
lae are expressed; some models, like Gaussian processes [5], would be extremely
difficult to describe without it. Turning a matrix expression into a computer pro-
gram is not always easy, however. Although good implementations of primitive
matrix operations are available [2] as are packages like MATLAB [6], which pro-
vide a high-level interface to these primitives, two important tasks must still be
carried out manually: (i) computing derivatives of matrix functions and (ii) turning
a matrix expression into an efficient computer program. Not having tools to do
this can and does harm research: even for the relatively simple example of fitting a
linear regression model with gradient methods, the number of types and combina-
tions of basis functions a researcher can experiment with is limited by the need to
manually differentiate the objective function and write code for each version. We
have addressed these issues by combining a symbolic matrix algebra engine with
a superoptimizing compiler: an interesting learning problem in itself. We call our
system Coconut.

Coconut transforms matrix expressions into fast programs for computing them.
For the most part, Coconut treats an expression symbolically and by maintaining
the semantic structure of a matrix expression, high-level knowledge can be used to
provide two powerful features: differentiation and simplification. Differentiation
requires the recursive application of the rules of matrix calculus [3]. This blind
application frequently results in large expressions that are inefficient to compute:
the real power of Coconut is its ability to simplify expressions.

We define simplification as the transformation of a source expression into one
with equivalent output, but lower computational cost. To do this, Coconut is pro-
vided with a list of matrix identities (e.g., the matrix inversion lemma) and by
matching identities to a source expression, a new set of equivalent expressions is
generated. Performing this recursively gives rise to an infinite graph of equivalent
matrix expressions, in which we would like to find the node with the minimum
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cost. Greedy application of identities, which is effectively ‘peep-hole’ optimiza-
tion in the compiler sense [1], performs very poorly in this domain. Even basic
simplifying actions, such as expanding and collecting terms, reveal that frequent
‘uphill’ moves are needed to make significant ‘downhill’ progress. We approach
this problem as one of reinforcement learning in which an ‘agent’ traverses the
graph is search of good local optima. Initially, our agent performs a random walk
around the graph by applying matching identities at random. However, by record-
ing how trajectories affect the objective function, we are able to learn an improved
proposal distribution from which future trajectories are sampled.

While existing symbolic algebra packages, e.g., Maple [7], provide differen-
tiation, simplification and code generation functionality, they handle matrices at
the level of scalar entries. This is limiting in two ways. First, problem sizes are
severely restricted: matrices of sizes much larger than 10 × 10 overflow modern
computers. More importantly, the derivative of an expression such as AX−1 is
computed by explicitly expanding the inverse, leading to computationally unstable
as well as enormous code. In contrast, Coconut treats scalars as special cases of
matrices (not the other way around), and maintains the separation between a for-
mula and the algorithm used to implement it, so that stable and efficient numerical
methods (e.g. for computing AX−1) can be employed. Automatic differentiation
[4] is another alternative to our approach, but this is slow and memory-hungry
when dealing with a large number of variables.

We demonstrate Coconut’s effectiveness by fitting a Gaussian mixture model
to data under a variety of priors, and by learning a Gaussian process regression,
both using Newton’s method. The only programming required to do this is the def-
inition of the objective function f(x). Differentiation to obtain the gradient∇f(x)
and the Hessian ∇2f(x), simplification and code generation are all performed au-
tomatically.
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