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Many applications in computer vision involve learning amtagnition of patterns from exemplars which lie on certain
manifolds. Given a database of examples and a query, thenfiolyj two questions are usually addressed — a) what is the
‘closest’ example to the query in the database ? b) what isnlest probable’ class to which the query belongs ? The answer
to the first question involves study of the geometric praperof the manifold, which then leads to appropriate deéingi
of distance metrics on the manifold (geodesics etc). Thevant the second question involves statistical modelingntefr-
and intra-class variations on the manifold. In this paper,ooncern ourselves with two related manifolds that oftgmeapin
several vision applications — tiiefel Manifold and theGrassmann Manifold. We describe statistical modeling and inference
tools on these manifolds which result in significant imprmoeats in performance over traditional distance-basedifies.

We illustrate applications to video-based face recogmiiad activity recognition.

I. INTRODUCTION

The Stiefel manifold is the space bforthonormal vectors itR™, represented by am x k& matrix Y, such thatv 7y = I,,.
The Grassmann manifold is the spacekofimensionalkubspaces in R™ and can be viewed as the orbit space of the Stiefel
manifold (over full rank matrices). The study of these malai$ has important consequences for applications suchrantyg
textures [5], human activity modeling and recognition [@ideo based face recognition [1], shape analysis [3], whiata
naturally lies either on the Stiefel or the Grassmann méahifo

The Stiefel Manifold Vj, ,,, [2]:  The Stiefel manifoldV; ,,, is the space whose points dedrames in R™, where a set of
k orthonormal vectors itR™ is called ak-frame in R™(k <= m). Each point on the Stiefel manifold, ,, can be represented
as am x k matrix X such thatX” X = I, wherel, is thek x k identity matrix.

The Grassmann Manifold Gy ,,— [2]: The Grassmann manifold; ., is the space whose points akeplanes or
k-dimensional hyperplanes (containing the origin)Afi*. An equivalent definition of the Grassmann manifold is asofes.
To eachk-planev in Gy ,—j corresponds a unique: x m orthogonal projection matri¥’ idempotent of rank onto v. If
the columns of ann x k matrix Y spansv, then,YY” = P.

II. DISTANCE METRICS AND STATISTICAL MODELS

Procrustes Distance:  Two representations of points on the Stiefel manifold cardéined [2].
« Representatioi¥,,: A point X on Vj ,, is anm x k matrix such thatX” X = .
» Representatiof;: A point X onV; ,, is identified with an equivalence classwfx k& matricesX R in R, j, for R > 0.
This is also called the Procrustes representation of thefebtinanifold.
The squared Procrustes distance for two given mat€esnd X, on the Stiefel manifold, is the smallest squared Euclidean
distance between any pair of matrices in the correspondingyalence classes (representatig). Hence,

dy, (X1, X2) = min tr(X; — XoR)T(X; — X2R) (1)
= min tr(R"R - 2XT XoR + I,) )
>

Thus, for the case wher® varies over the spac®&; ; of all £ x k& matrices, the distance is given lms%,b (X1,X9) =
tr(I, — AT A), where A = XT Xo.

Kernel Density Estimator: Given several examples from a clagX;, X»,...,X,) on the manifoldV} ., the class
conditional density can be estimated using an appropriateek function. For the Procrustes distance mei?jbc the density
estimate is given by [2] as

F(X; M) = %C(M) i KM, — XT XX X)) M~/ 3)

where K(T') is the kernel function}M is a k x k positive definite matrix which plays the role of the kernedthi or a
smoothing parametef!(M) is a normalizing factor chosen so that the estimated demmgigrates to unity. The matrix valued
kernel functionK (T') can be chosen in several ways. We have uséd’) = exp(—¢r(T")) in all the experiments reported in
this paper.
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IIl. APPLICATIONS AND EXPERIMENTS

ARMA Modeling for Action recognition: A wide variety of time series data such as dynamic textures)dn joint angle
trajectories, shape sequences, video based face recogetti are frequently modeled as autoregressive and movirgge
(ARMA) models [5], [6], [1]. The ARMA model equations are giv by

ft) = Cz(t) +w(t) w(t) ~ N0, R) (4)
z(t+1) = Az(t) +v(t) wv(t) ~ N(0,Q) (5)

where,z is the hidden state vectad, is the transition matrix and’ is the measurement matrix. Given a sequence of observations
FO), f(2),...f(7), let[f(1), £(2),... f(7)] = USVT be the singular value decomposition of the data. Then, ttima®s of

the model parametergd, C) areC = U, A = VT D, V(VTD,V)~*x~!, whereD; = [0 0;I,_; 0] and Dy = [I,_; 0;0 0].

The model observation matrix' is constrained to be an orthonormal matrix. Thus, @henatrix lies on the Stiefel manifold.

We performed a recognition experiment on the publicly adé INRIA dataset [7]. The dataset consists16f actors
performing11 actions, each action execut8dtimes at varying rates while freely changing orientatiore Wsed the view-
invariant representation and features as proposed in [¥.t&mporal evolution of features for an action is modeladguan
ARMA model. In figure 1 (a), we show the recognition result$aided using four methods.

Video-Based Face Recognition: Video-based face recognition by modeling the ‘cropped oigéther as dynamical models
([1]) or as a collection of PCA subspaces [4] have recentipeghpopularity due to their ability to recognize faces friow
resolution videos. The model parameters in both theseriosga(C matrix of the ARMA model or PCA subspace) are directly
identifiable as points on the Grassmann Manifold. Therefooth Procrustes distance and Kernel density methods eretlgti
applicable to video-based face recognition. In our expenis, we model the temporal evolution of the ‘cropped videsihg
an ARMA model. We tested our method on the dataset used inTf.dataset consists of face videos férsubjects with2
sequences per subject. Subjects arbitrarily change héamtation and expressions. The illumination conditioriseded widely
for the 2 sequences of each subject. For each subject, one sequesiesedhas the gallery while the other formed the probe.
The experiment was repeated by swapping the gallery andrtteeplata. The recognition results are reported in table).1 (b
For kernel density estimation, the available gallery segador each actor was split into three distinct sequencesse&n in
the last column, the kernel-based method outperforms tier @pproaches.

Both these experiments demonstrate the strength of statishodeling on the appropriate manifolds. Significant ioye-
ments in recognition accuracy are obtained in both cases.

Activity Best Subspace| NN- Kerne-

Dim. Angles Pro- Stiefel

Red. 163 Stiefel 163

[7] volume 162 volume

64° volume

volume
Check Waich| 86.66 | 93.33 90 100 Test condition System | Procrustes | Kernd
Cross Arms | 100 100 96.67 100 Dis- density
Scratch Head| 93.33 | 76.67 90 96.67 tance
Sit Down 93.33 | 9333 | 9333 | 93.33 1 |[ Galleryl,Probe2 | 81.25 | 93.75 93.75
Get Up 93.33 | 86.67 | 80 96.67 2 || Gallery2,Probel | 68.75 | 81.25 93.75
Turn Around | 96.67 | 100 100 100 3 || Average 75% S57.5% 93.75%
Walk 100 100 100 100
Wave Hand | 80 93.33 90 100
Punch 96.66 | 93.33 83.33 100
Kick 96.66 100 100 100
Pick Up 90 96.67 96.67 100
Average 93.33 | 93.93 92.72 98.78

@) (b)

Fig. 1. (a) Comparison of view invariant recognition of activitissthe INRIA dataset using the dimensionality reduction moefs of [7],
ARMA subspace angles, Procrustes distance on the Stiefeifafthand Maximum likelihood using kernel density methaats the Stiefel
manifold (b) Comparison of video based face recognitionragghes ARMA model distance, Stiefel Procrustes distakiaifold kernel
density.
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