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Many applications in computer vision involve learning and recognition of patterns from exemplars which lie on certain
manifolds. Given a database of examples and a query, the following two questions are usually addressed – a) what is the
‘closest’ example to the query in the database ? b) what is the‘most probable’ class to which the query belongs ? The answer
to the first question involves study of the geometric properties of the manifold, which then leads to appropriate definitions
of distance metrics on the manifold (geodesics etc). The answer to the second question involves statistical modeling ofinter-
and intra-class variations on the manifold. In this paper, we concern ourselves with two related manifolds that often appear in
several vision applications – theStiefel Manifold and theGrassmann Manifold. We describe statistical modeling and inference
tools on these manifolds which result in significant improvements in performance over traditional distance-based classifiers.
We illustrate applications to video-based face recognition and activity recognition.

I. I NTRODUCTION

The Stiefel manifold is the space ofk orthonormal vectors inRm, represented by anm×k matrix Y , such thatY T Y = Ik.
The Grassmann manifold is the space ofk dimensionalsubspaces in Rm and can be viewed as the orbit space of the Stiefel
manifold (over full rank matrices). The study of these manifolds has important consequences for applications such as dynamic
textures [5], human activity modeling and recognition [6],video based face recognition [1], shape analysis [3], wheredata
naturally lies either on the Stiefel or the Grassmann manifold.

The Stiefel Manifold Vk,m [2]: The Stiefel manifoldVk,m is the space whose points arek-frames in Rm, where a set of
k orthonormal vectors inRm is called ak-frame inRm(k <= m). Each point on the Stiefel manifoldVk,m can be represented
as am × k matrix X such thatXT X = Ik, whereIk is thek × k identity matrix.

The Grassmann Manifold Gk,m−k [2]: The Grassmann manifoldGk,m−k is the space whose points arek-planes or
k-dimensional hyperplanes (containing the origin) inRm. An equivalent definition of the Grassmann manifold is as follows.
To eachk-planeν in Gk,m−k corresponds a uniquem × m orthogonal projection matrixP idempotent of rankk onto ν. If
the columns of anm × k matrix Y spansν, then,Y Y T = P .

II. D ISTANCE METRICS AND STATISTICAL MODELS

Procrustes Distance: Two representations of points on the Stiefel manifold can bedefined [2].
• RepresentationVa: A point X on Vk,m is anm × k matrix such thatXT X = Ik.
• RepresentationVb: A point X on Vk,m is identified with an equivalence class ofm×k matricesXR in Rm,k, for R > 0.

This is also called the Procrustes representation of the Stiefel manifold.
The squared Procrustes distance for two given matricesX1 andX2 on the Stiefel manifold, is the smallest squared Euclidean
distance between any pair of matrices in the corresponding equivalence classes (representationVb). Hence,
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Kernel Density Estimator: Given several examples from a class(X1, X2, . . . , Xn) on the manifoldVk,m, the class

conditional density can be estimated using an appropriate kernel function. For the Procrustes distance metricd2
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whereK(T ) is the kernel function,M is a k × k positive definite matrix which plays the role of the kernel width or a
smoothing parameter.C(M) is a normalizing factor chosen so that the estimated densityintegrates to unity. The matrix valued
kernel functionK(T ) can be chosen in several ways. We have usedK(T ) = exp(−tr(T )) in all the experiments reported in
this paper.
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III. A PPLICATIONS AND EXPERIMENTS

ARMA Modeling for Action recognition: A wide variety of time series data such as dynamic textures, human joint angle
trajectories, shape sequences, video based face recognition etc are frequently modeled as autoregressive and moving average
(ARMA) models [5], [6], [1]. The ARMA model equations are given by

f(t) = Cz(t) + w(t) w(t) ∼ N(0, R) (4)

z(t + 1) = Az(t) + v(t) v(t) ∼ N(0, Q) (5)

where,z is the hidden state vector,A is the transition matrix andC is the measurement matrix. Given a sequence of observations
f(1), f(2), . . . f(τ), let [f(1), f(2), . . . f(τ)] = UΣV T be the singular value decomposition of the data. Then, the estimates of
the model parameters,(A, C) areĈ = U, Â = ΣV T D1V (V T D2V )−1Σ−1, whereD1 = [0 0;Iτ−1 0] andD2 = [Iτ−1 0;0 0].
The model observation matrixC is constrained to be an orthonormal matrix. Thus, theC matrix lies on the Stiefel manifold.

We performed a recognition experiment on the publicly available INRIA dataset [7]. The dataset consists of10 actors
performing11 actions, each action executed3 times at varying rates while freely changing orientation. We used the view-
invariant representation and features as proposed in [7]. The temporal evolution of features for an action is modeled using an
ARMA model. In figure 1 (a), we show the recognition results obtained using four methods.

Video-Based Face Recognition: Video-based face recognition by modeling the ‘cropped video’ either as dynamical models
([1]) or as a collection of PCA subspaces [4] have recently gained popularity due to their ability to recognize faces fromlow
resolution videos. The model parameters in both these instances (C matrix of the ARMA model or PCA subspace) are directly
identifiable as points on the Grassmann Manifold. Therefore, both Procrustes distance and Kernel density methods are directly
applicable to video-based face recognition. In our experiments, we model the temporal evolution of the ‘cropped video’using
an ARMA model. We tested our method on the dataset used in [1].The dataset consists of face videos for16 subjects with2
sequences per subject. Subjects arbitrarily change head orientation and expressions. The illumination conditions differed widely
for the2 sequences of each subject. For each subject, one sequence was used as the gallery while the other formed the probe.
The experiment was repeated by swapping the gallery and the probe data. The recognition results are reported in table 1 (b).
For kernel density estimation, the available gallery sequence for each actor was split into three distinct sequences. As seen in
the last column, the kernel-based method outperforms the other approaches.

Both these experiments demonstrate the strength of statistical modeling on the appropriate manifolds. Significant improve-
ments in recognition accuracy are obtained in both cases.
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Check Watch 86.66 93.33 90 100
Cross Arms 100 100 96.67 100
Scratch Head 93.33 76.67 90 96.67
Sit Down 93.33 93.33 93.33 93.33
Get Up 93.33 86.67 80 96.67
Turn Around 96.67 100 100 100
Walk 100 100 100 100
Wave Hand 80 93.33 90 100
Punch 96.66 93.33 83.33 100
Kick 96.66 100 100 100
Pick Up 90 96.67 96.67 100
Average 93.33 93.93 92.72 98.78

Test condition System
Dis-
tance

Procrustes Kernel
density

1 Gallery1,Probe2 81.25 93.75 93.75
2 Gallery2,Probe1 68.75 81.25 93.75
3 Average 75% 87.5% 93.75%

(a) (b)

Fig. 1. (a) Comparison of view invariant recognition of activitiesin the INRIA dataset using the dimensionality reduction methods of [7],
ARMA subspace angles, Procrustes distance on the Stiefel manifold and Maximum likelihood using kernel density methodson the Stiefel
manifold (b) Comparison of video based face recognition approaches ARMA model distance, Stiefel Procrustes distance,Manifold kernel
density.
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