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We present algorithms for learning hierarchical latent variable representations that combine the
computational properties of factorized, tree dependency structures, with latent variable models of-
fering the geometrical and topological features of spectral, non-linear embeddings. We build on our
recent work on Spectral Latent Variable Models (SLVM) [1] and extend it to learning hierarchies
that can represent multiple levels of correlation in the data. Our stagewise, hierarchical algorithm
(HLSVM) boils down to learning a partially observed, non-linear, directed graphical model with
tree-dependency. We use probabilistic formulations and ML training, see [2] for an alternative
model and cost. For motivation, consider the case of a running person. The intrinsic dimensionality
of a runner is the one of a 1d harmonic oscillator. But this minimalist model does not account for
stylistic differences among people or for the lack of synchronization produced by external influ-
ences (obstacles, carry-on bags) present in many real-world situations. What seems appropriate is a
hierarchy, with the strongest, lowest-dimensional model of correlation at the top (say), the weakest
high-dimensional model of limbs moving unrestrictedly at the bottom, and various degrees of flex-
ibility in-between (e.g. regularities among subsets of variables for each leg or arm, but no global
constraints among them). The hierarchy can be used for the visual inference of 3D human body pose
from images, either by estimating several representation levels simultaneously, or by automatically
adapting the level of complexity to match the statistical regularity of the observation.

Spectral Latent Variable Models (SLVM): Assume vector-valued points in ambient space Y =
{yi}i=1...N captured from a high-dimensional process, and corresponding latent space points X =
{xi}i=1...N , initially obtained using a spectral, non-linear embedding method like ISOMAP, LLE,
Hessian or Laplacian Eigenmaps, etc. We model the joint distribution over latent and ambient vari-
ables as: p(x,y) = p(x)p(y|x). The latent space prior p(x) is modeled as a non-parametric kernel
density estimate, with covariance θ: p(x) = 1

K

∑K
i=1 Kθ(x,xi). In the model, we assume that am-

bient vectors are related to the latent ones using a nonlinear vector-valued function with parameters
W and noise covariance σ: p(y|x,W,σ) ∼ N (y|F(x,W),σ), where N is a Gaussian distribu-
tion with mean F and covariance σ. F is a generalized regression model: F(x,W) = Wφ(x)
with φ(x) = [Kδ(x,x1), . . . ,Kδ(x,xM )]�, and kernels with covariance δ placed at an M-size
subset of xi. W is a weight matrix of size DxM . We use hierarchical priors on the parameters W
in order to select a sparse subset for prediction [3, 1].

The ambient marginal is obtained by integrating the latent space. The evidence, as well as
derivatives w.r.t. model parameters, are computed using a Monte Carlo (MC) estimate using, say
S, samples from the prior. This gives the MC estimate of the ambient marginal: p(y|W,σ) =∫

p(y|x,W,σ)p(x)dx ≈ 1
S

∑S
s=1 p(y|x(s),W,σ). The latent space conditional is obtained

using Bayes’ rule: p(x|y) = p(y|x)p(x)
p(y) = S

K
p(y|x)

∑K
i=1 Kθ(x,xi)∑S

s=1 p(y|x(s),W,σ)
. For pairs of ambient data

points j and MC latent samples i, we abbreviate p(i,j) = p(xi|yj). The choice of prior p(x)
influences the membership probabilities. We can compute either the conditional mean or the
mode (better for multimodal distributions) in latent space, using the same MC integration method:
E{x|yn,W,σ} =

∫
p(x|yn,W,σ)xdx =

∑K
i=1 p(i,n)xi, where imax = arg maxi p(i,n). The

model contains the ingredients for efficient computation in both latent and ambient space: a prior



in latent space, an ambient marginal, the conditional distribution from latent to ambient space,
and vice-versa. Latent conditionals given partially observed y vectors are easy computable –
the conditional distribution of y is Gaussian and unobserved components can be integrated an-
alytically (see [1] for details). We train by maximizing the log-likelihood of the data: L =
log

∏N
i=1 p(yn|W,σ) =

∑N
n=1 log{ 1

S

∑S
s=1 p(yn|x(s),W,σ)}. The model is fitted using EM,

and maximizing the likelihood gives estimates for W,σ. In the E-step we compute the member-
ship probabilities of latent points generating datapoints, p(i,j). In the M-step we learn the sparse
mapping and its noise model (W,σ), by solving a weighted regression problem [1]. The SLVM is
the building block used for learning hierarchies, described next.

Learning a Hierarchical SLVM (HSLVM): Our learning algorithm follows three steps: the con-
struction of intermediate latent variable sub-manifolds connected in a tree structure, the initializa-
tion of data and parameters at all pairs of nodes (or levels), and the EM-iteration. Learning boils
down to computing marginals at each node using the current parameters, and solving a decoupled
set of SLVM problems for each child-parent node, in breadth-first order.

Tree Construction: We build the tree by partitioning the original state space y (at the bottom level
of the tree, at present not automatically) into subsets of variables and constructing latent variable
model sub-manifolds for each. At the next, more compact level, subsets of latent variables are
grouped again, and new latent variable models are learned for each group. This becomes the data
modeled by the emerging level above, in order to obtain the next level of latent variables, and so
on, all the way to the root of the tree. The directionality of the child-parent relations goes opposite
to the way the tree is built – top-down from the root, corresponding to the most compact model,
through intermediate levels that encode different degrees of correlation among variables, all the way
to the leaves (groups of variables of the original state space). Each layer in the tree is as a possible
representation of the data. Observed data y can be generated from a given level by following the
dependency structure and local node mappings/conditionals, down to leaves.

Initialization: At each level of tree construction we compute non-linear embeddings using the
datapoints representing subsets of variables in the level below, in order to obtain the data for the
level above. The identity of the data is preserved, hence we always combine (complementary) latent
representations corresponding to the same original datapoint and don’t crossover between different
ones. Once the data at each node is available, KDE approximations to marginals (latent ‘priors’ in
SLVMs) are constructed and mappings to the level below are learnt (i.e. learn individual SLVMs
for all parent-child node pairs).

EM iteration: E-step: Given parameters, compute marginals at each node. These are Gaussian
mixtures obtained using MC estimates from the ‘prior’ of each SLVM, computed as the marginal at
its parent node. M-step: Solve decoupled SLVM problems for each child-parent node. This requires
samples from both marginals (the child’s to compute the MC estimate and the parent’s to generate
the data used at current EM iteration). The latter is also used for the MC estimate of the next layer.
Hence the SLVMs are optimally learned breadth first. Notice that following initialization, the only
marginal that is not re-estimated is the one at the root (the initial KDE estimate).
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