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In many signal processing applications, the the set A, of signals we wish to
recover, as well as the interference set B (usually referred to as “Clutter”) are
both sparse. This implies that the resulting set X = A + B of recorded signals
must be sparse as well. The Detection/Estimation (DE) problem can be seen
as a classification problem on this set X.

The work summarized in the present Abstract, illustrates how the Convo-
lutional Network (CN, [1]), a successful approach to Supervised Learning, is in
fact fundamentally related to the Mathematical Theory of Compressed Sens-
ing. We show through a series of experiments that the Convolutional Network
efficiently approximates the optimal polynomial time algorithm implied in the
theory '. We present a theoretical foundation for a non probabilistic DE-theory
for signals in clutter and argue in favor of the solution of such problems by
means of CN-based strategies.

Resting on known results, but only recently starting to attract the efforts
of the Scientific Community, Discrete Compressed Sensing ([2]) deals with the
task of economically recording information about signals, viewed as a elements
of a vector space V ~ R™. More specifically, n non-adaptive measurements

{y1,...,ynt € R are made of x € V. Each measurement takes the form of a
linear functional @ : V — R applied to z:
Py (z) = yk (1)

In general we can write:
o = (D1,...,9,), n<< N (2)
So that, with obvious notation:
V- W (3)

We can interpret the series of measurements (in a given order) as having
made the choice of a compressive matched filter ([3]) acting on the space V to
acquire information about the object x.

11t has been proven that, under the assumption of sparsity of the sets X, such optimal
compressive matched filters ([3]) can be found in polynomial time.



Once the information is collected (or “encoded”) by means of the matched
filters, a non-linear mapping Ag : W — V' is formed to reconstruct the original
object x, and the error is computed with respect to some norm N(-) = || - || of
choice. Next we define the error:

E(z,®,88) = [|As (P(2)) — 2| (4)

The most relevant aspect of the Compressed Sensing framework is that the best
possible performance of an encoder-decoder pair can be determined by a simple
mathematical bound. In particular, if X C V is a sparse set, the error of Ag on
X is the maximum error of any individual reconstruction of X:

E(X,®,As) = sup, (E(z,®,As)), (5)
and the error of the best decoder is :
E(X,an) = an@ (E(qu)vA@)) (6)

It holds that, under reasonable regularity assumptions for X, the best possible
decoder is bounded by:

d"(X) < E(X,N,n) < C-d"(X). (7)

where d"(X) is a number depending on the choice of the norm N called the
Gelfand n-width of the set X2. In particular, the minimum number M of mea-
surements needed to reconstruct the geometry of X follows the bound:

M = C-K -log (g) ([3]) (8)

Our works shows that the number of features needed by a CN-classifier follows
this growth-law.
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2The Gelfand width of X C V is defined as the infy {sup(||z||) | £ € X N Y} where Y is a
subspace of V of codimension n



