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We investigate the use of particle filtering [1] to automatically identify protein structures in electron
density maps. A protein – a linear chain of amino acids that folds into some specific 3D conformation –
consists of a repeating four-atom backbone motif with sidechains hanging off at uniform intervals; each of
the twenty naturally occurring amino acids has a different sidechain. The electron density map, analogous
to a 3-dimensional picture of a protein, is produced as the final result of x-ray crystallography. Interpreting
these maps, that is, locating all the protein’s atoms in these complex 3D images is often time consuming,
requiring a crystallographer spend weeks to months tediously placing each atom.

Our previous work [2, 3] employs probabilistic inference to compute the marginal distribution of each
amino-acid’s 3D location on a grid. However, several simplifications are made by this model. First, our
previous model identifies the location of just a single atom in each amino-acid, the alpha carbon (Cα).
Biologists are interested in not just the position of each Cα, but in the location of each of the four to
fourteen non-hydrogen atoms in each amino acid. Second, our model places these Cα’s on a grid, typically
with 1Å grid spacing. However, interatomic distances are known to much greater accuracy: the Cα–Cα

bond is always 3.8Å, with a standard deviation of less than 0.1Å. By forcing Cα’s to lie on grid point, we
get a predicted protein structure that may not be physically feasible.

To address these shortcomings, and produce the most likely physically feasible all-atom protein model (or
set of models), we have investigated the use of particle filtering (PF). Statistical importance resampling
(SIR) [1, 4] – a particle filtering method – approximates some posterior probability distribution over a
state sequence x0:N given observations y0:N as the sum of a finite number of point estimates xi

0:N , each
with weight wi such that

∑N
i=0 wi = 1. Assuming x0:N is a Markov process, we get the recursion:

p(x0:k|y0:k) ∝ p(yk|xk) · p(xk|xk−1) · p(x0:(k−1)|y0:(k−1)) (1)

SIR is based on the assumption that p(yk|xk) · p(xk|xk−1) above is hard to sample directly, but easy to
evaluate up to proportionality. If there is another distribution q(xk|xk−1, yk) from which we can directly
sample, then we can use q to generate each xi
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k, then reweight each particle as the ratio
of p(x) to q(x),

wtik ∝ wtik−1 ·
p(yi

k|xi
k) · p(xi

k|xi
k−1)

q(xi
k|xi

k−1, y
i
k)

(2)

For density-map interpretation, each xk is the position of every atom in amino acid k. We want to find
the conformation x0:N that best explains the observed map. To simplify somewhat, we parameterize xk

as a Cα translation bk, a rotation rk and a sidechain orientation sk. We consider only a finite number
of distinct sidechain conformations; thus, sk is simply an index into a database of known sidechain 3D
structures. The probability of adding a residue in a specific conformation, p(yk|xk) · p(xk|xk−1) is easily
computed for some placement of atoms xk, but difficult to sample: the first term is based on a measure
used by crystallographers, the R-factor – which measures how well a map is explained by a model – while
the second term is derived from previously solved structures.
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Figure 1: Conditional dependencies in sidechain (sk)
and Cα (bk) layout. Numbers indicate the order in
which labels are sampled. Rotations (rk, not shown)
are uniquely determined given sk and 〈bk−1, bk, bk+1〉.

Figure 2: A comparison of the true structure (white)
of a 5-amino-acid protein fragment and the highest-
weight particle from a 500-particle run (black). The
backbone is indicated by the thicker segments.

Our importance function q(xk|xk−1, yk) separates sampling the Cα translation of each amino acid and the
sidechain conformation. Figure 1 illustrates how the protein structure is grown. At each step, we first
sample Cα position bk+1 given bk as the product of bk+1’s probability based on observed conformations
of 〈bk, bk+1〉, and the approximate marginal p̂k+1(bk+1),

q(bk+1|bk) = pkinematics(bk+1|bk) · p̂k+1(bk+1) (3)

Once we have chosen location bk+1, we pick a sidechain conformation sk and orientation rk. The probabil-
ity of some sidechain conformation is computed from the correlation coefficient between the sidechain and
the map: for each sidechain and orientation, we compute the probability pk that the correlation coefficient
was generated by chance; each sidechain conformation’s probability is proportional to (1 − pk)/pk.

Next, given the triple 〈bk−1, bk, bk+1〉 and the evidence (the density map), we sample rk and sk. Sampling
from this distribution is straightforward; there are a finite number (usually 100 or so) of sk’s which we
can completely enumerate, and – given sk and 〈bk−1, bk, bk+1〉 – there is only a single rk with non-zero
probability. Once amino acid k is sampled, the weights of each particle are updated as in Equation 2.

Using the marginals to guide sampling requires significantly fewer particles to recover an accurate structure
than either using the priors to guide our search, or using kinematics alone. Figure 2 compares the true
structure and the highest-weight predicted particle on a short protein segment. The error over this
segment is very close to the average error over the entire protein.

Preliminary results using this method are very promising: in one protein backbone error is reduced from
1.1Å RMSd to 0.8Å RMSd; in another backbone error is reduced from 2.1Å RMSd to 1.8Å RMSd while
the portion of the protein identified increases from 91% to 100%. Perhaps more importantly, these traces
return a physically feasible all-atom model.
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