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Conditional density estimation. The idea of conditional density estimation
is to construct a density estimate f̂(y|x) for a dependent variable y, conditional
on a vector of variables x. This can be seen as a generalization of regression,
where instead of estimating the expected value E(y|x) alone, we instead model
the full density. This is especially important for multi-modal densities, where
the expected value might be nowhere near a mode, and for situations in which
confidence intervals are preferred to point estimates. Some problems that can
be addressed by conditional density estimates are: time series prediction, static
regression with confidence bands, learning continuous k-Markov models, and
collaborative filtering.

Nonparametric conditional density estimators address the common situation
where f(y|x) has no known parametric form. Though widely applicable, this
class of estimators has received relatively little attention in the statistics com-
munity and little or none in the machine learning community. Following the
lead of the statisticians [1, 2, 3, 4, 5], our approach is to use a double kernel
estimator of the general form

f̂(y|x) =
∑

i Wh2(||x − Xi||)Kh1(y − Yi)∑
j Wh2(||x − Xj ||)

,

where K is a simple kernel function on y and W is a weight function on x that
can be more complicated than a simple kernel. This form is important in con-
tinuous spaces where a given value of the vector x is not likely to be observed
more than once. Naively, since we never get a sample set (Yi, x), this would
make estimation of f(y|x) impossible; however, this can be overcome by allow-
ing all observed values Xi to contribute in conditionally weighted fashion to
any value x for which f(y|x) is queried. Furthermore, by constructing estimates
only for univariate y, we can significantly reduce the explosive data require-
ments incurred by attempting to model f(y|x) with the multivariate densities
in f(x, y)/f(x) [6].

Theoretical and algorithmic contributions. We introduce an extended
version of the double kernel estimator that constructs the weights W on x using
multivariate locally linear smoothing (previous locally linear smoothers appear
to have been limited to the simpler case of univariate x [1, 4]). The locally linear
factor is important for added accuracy over the basic locally constant method,
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especially when extrapolating at the edges of the data. We use two bandwidth
selection methods, one that optimizes over a standard cross-validated estimate
of the integrated squared error (ISE), and the other optimizing a cross-validated
likelihood. The first has better robustness properties, but the latter is faster to
compute and does not appear to have been previously used for conditional den-
sity bandwidths. Direct computation of these quantities is O(N3) for ISE and
O(N2) for likelihood, which is probably the reason that applications of previous
work appear to have been confined to small, bivariate datasets (i.e. univariate x
and univariate y) [1, 2, 3, 4, 5]. We render the cross-validation tractable through
a new multi-tree-based fast approximation algorithm [7], making it possible to
handle datasets of greater dimensionality.

The contributions of this work are: locally linear smoothing for the case of
multivariate conditioning vectors x, first application of maximum likelihood
for conditional bandwidth selection, fast algorithms for data-driven bandwidth
selection using both ISE and likelihood criteria, and the first application to
datasets with multivariate conditioning.

Applications. We present results from applying kernel conditional density
estimation to several problems: some synthetic datasets that demonstrate good
performance where the answer is known; a dataset of geyser eruption lengths
for comparison with previous work; a dataset from Sloan Digital Sky Survey,
in which we estimate confidence intervals for distances to various astronomical
objects involved in mapping the large-scale structure of the universe; and a time
series problem in which we forecast bookings of flights and train itineraries,
with data coming from an industrial price management system that uses such
forecasts in a larger optimization framework.
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